Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The design phase of offshore installation projects is supported by numerical simulations. These analyses aim to evaluate the mechanical behavior of the equipment involved, such as vessels and flexible pipes, during that operation. Therefore, a common approach is to take the ocean wave loads modeled as deterministic ones (or regular wave approach), which is a simplification that, on the one hand, allows low computational cost, but, on the other one, lacks the representation of the actual behavior of the wave loads, usually better represented by means of an irregular wave modeling. In the way of searching for an irregular wave analysis procedure to be used in the daily design of lazy-wave riser installation analyses, this work proposes an artificial neural network (ANN)-based approach. The proposed model aims to achieve it by training a convolutional neural network (CNN) fed by generated data from short-length finite element-based numerical simulations. This surrogate model can predict quite well the pipe's top tension and approximately the axial tension in the touchdown zone (TDZ) for different configuration stages during the riser's installation operation. Moreover, the proposed model works for different environmental scenarios, which boosts the computational simulation time reduction in this phase of riser design.

References

1.
Journée
,
J. M. J.
, and
Massie
,
W. W.
,
2001
,
Offshore Hydromechanics
,
Delft University of Technology
,
Delft, Netherlands
.
2.
Guarize
,
R.
,
2004
, “
Uso de Redes Neurais na Análise de Resposta Dinâmica de Estruturas
,”
Master's dissertation
,
COPPE/Federal University of Rio de Janeiro
,
Brazil
. (in Portuguese)
3.
Guarize
,
R.
,
Matos
,
N. A. F.
,
Sagrilo
,
L. V. S.
, and
Lima
,
E. C. P.
,
2007
, “
Neural Networks in the Dynamic Response Analysis of Slender Marine Structures
,”
Appl. Ocean Res.
,
29
(
3
), pp.
191
198
.
4.
de Pina
,
A. C.
,
de Pina
,
A. A.
,
Albrecht
,
C. H.
,
Lima
,
B. S. L. P.
, and
Jacob
,
B. P.
,
2013
, “
ANN-Based Surrogate Models for the Analysis of Mooring Lines and Risers
,”
Appl. Ocean Res.
,
31
(
3
), pp.
76
86
.
5.
Chaves
,
V. V.
,
2015
, “
Artificial Neural Networks Applied to the Analysis of Flexible Pipes
,”
Master's dissertation
,
COPPE/Federal University of Rio de Janeiro
,
Brazil
.
6.
Christiansen
,
N. H.
,
Hogsberg
,
J.
,
Voie
,
P. E. T.
, and
Sodahl
,
N.
,
2013
, “
Efficient Mooring Line Fatigue Analysis Using a Hybrid Method Time Domain Simulation Scheme
,”
Proceedings of the ASME 32nd International Conference on Ocean, Offshore and Arctic Engineering (OMAE)
,
Nantes, France
,
June 9–14
.
7.
da Silva
,
V. R. M.
,
Sagrilo
,
L. V. S.
, and
da Araujo
,
B. S.
,
2022
, “
Applied Deep Learning for Slender Marine Structure Dynamic Analysis
,”
ASME J. Offshore Mech. Arct. Eng.
,
144
(
2
), p.
021701
.
8.
Rodrigues
,
T. C.
,
Gonzalez
,
G. M.
, and
Sagrilo
,
L. V. S.
,
2002
, “
An Artificial Neural Network Approach for Fatigue Analysis of Slender Marine Structures
,”
Proceedings of the ASME 41st International Conference on Ocean, Offshore and Arctic Engineering (OMAE)
,
Hamburg, Germany
,
June 5–10
.
9.
Vignoles
,
M. A.
,
2002
, “
Análises Determinística e Aleatória no Cálculo da Vida à Fadiga das Armaduras Metálicas de Risers Flexíveis
,”
Master's dissertation
,
COPPE/Federal University of Rio de Janeiro
,
Brazil
. (in Portuguese)
10.
Zhang
,
Y.
, and
Xin
,
J.
,
2022
, “Flexible Pipes and Umbilicals,”
Encyclopedia of Ocean Engineering
,
W.
Cui
,
S.
Fu
, and
Z.
Hu
, eds.,
Springer
,
Berlin, Germany
, pp.
23
26
.
11.
Bai
,
Q.
,
2014
,
Subsea Pipeline Design, Analysis, and Installation
,
Elsevier
,
Waltham
.
12.
Larsen
,
C. M.
,
Sævik
,
S.
, and
Qvist
,
J.
,
2014
, “Design Analysis,”
Handbook on Design and Operation of Flexible Pipes
, NTNU/4Subsea/SINTEF,
Marintek
,
Trondheim, Norway
, pp.
19
23
.
13.
Mourelle
,
M. M.
,
1993
, “
Análise Dinâmica de Sistemas Estruturais Constituídos por Linhas Marítimas
,”
D.Sc. thesis
,
Civil Engineering Department, COPPE/Federal University of Rio de Janeiro
,
Brazil
. (in Portuguese).
14.
Hornik
,
K.
,
Stinchcombe
,
M.
, and
White
,
H.
,
1989
, “
Multilayer Feedforward Networks Are Universal Approximators
,”
Neural Netw.
,
2
(
5
), pp.
359
366
.
15.
McCulloch
,
W. S.
, and
Pitts
,
W.
,
1943
, “
A Logical Calculus of Ideas Immanent in Nervous Activity
,”
Bull. Math. Biophys.
,
5
(
4
), pp.
115
133
.
16.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2017
,
Deep Learning
,
MIT Press
,
Cambridge, MA
.
17.
Evsukoff
,
A. D.
,
2020
,
Inteligência Computacional: Fundamentos e Aplicações, E-Papers
,
Rio de Janeiro
,
Brasil
. (in Portuguese).
18.
Hubel
,
D. H.
, and
Wiesel
,
T. N.
,
1962
, “
Receptive Fields, Binocular Interaction, and Functional Architecture in the Cat's Visual Cortex
,”
J. Physiol.
,
160
(
1
), pp.
106
154
.
19.
Lecun
,
Y.
,
Bottou
,
L.
,
Bengio
,
Y.
, and
Haffner
,
P.
,
1998
, “
Gradient-Based Learning Applied to Document Recognition
,”
Proc. IEEE
,
86
(
11
), pp.
2278
2324
.
20.
Kalchbrenner
,
N.
,
Grefenstette
,
E.
, and
Blunsom
,
P.
,
2014
, “
A Convolutional Neural Network for Modelling Sentences
,”
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics
,
Baltimore, MD
,
June 23–24
.
21.
Oord
,
A.
,
Dieleman
,
S.
,
Zen
,
H.
,
Simonyan
,
K.
,
Vinyals
,
O.
,
Graves
,
A.
,
Kalchbrenner
,
H.
,
Senior
,
A.
, and
Kavukcuoglu
,
K.
,
2016
, “
WaveNet: A Generative Model for Raw Audio
,”
arXiv
.
22.
Naess
,
A.
, and
Moan
,
T.
,
2012
,
Stochastic Dynamics of Marine Structures
,
Cambridge University Press
,
Cambridge, UK
.
23.
Chakrabarty
,
S. K.
,
2005
,
Handbook of Offshore Engineering
, Vol.
I
,
Elsevier
,
Amsterdam, The Netherlands
.
24.
Sagrilo
,
L. V. S.
,
Gao
,
Z.
, and
Naess
,
A.
,
2012
, “
On the Extreme Value Analysis of the Response of a Turret Moored FPSO
,”
ASME J. Offshore Mech. Arct. Eng.
,
134
(
4
), p.
041603
.
You do not currently have access to this content.