Abstract

In this work, we analyze the effect of multiple thick porous layers, fitted around a rigid vertical circular cylinder, on the wave forces acting on the rigid structure. Using the eigenfunction expansion method in cylindrical coordinates, we derive the expressions for velocity potentials in the respective domains and finally calculate the wave force acting on the rigid structure by integrating the pressure term. Consideration of the multiple porous layers, each with different porosities, gives rise to a very basic question to answer: what will be the appropriate arrangement of the porous layers to reduce the wave impact? Hence, for numerical study, we consider three different arrangements of the porous layers. For such arrangements of the porous layers, we also analyze the effects of the other crucial parameters, such as the number and the thickness of the porous layers, on the wave force. The key finding of the analysis is that the wave force acting on the rigid structure can be minimized by increasing the number of porous layers with decreasing porosity from the innermost layer to the outermost layer. The wave breaking and forced oscillations for certain values of the porous impedance parameter are some of the interesting observations. The present model is also verified against an existing work in the literature which shows an excellent agreement.

References

1.
Havelock
,
T. H.
,
1940
, “
The Pressure of Water Waves Upon a Fixed Obstacle
,”
Proc. R. Soc. London, A
,
175
(
963
), pp.
409
421
.
2.
Morison
,
J. R.
,
1950
, “The Forces Exerted by Waves on Marine Structures,” Wave Project Report, 3.
3.
MacCamy
,
R. C.
, and
Fuchs
,
R. A.
,
1954
,
Wave Forces on Piles: A Diffraction Theory
, Vol.
69
,
US Beach Erosion Board
,
The University of California, Berkeley, CA
.
4.
Bhatta
,
D. D.
, and
Rahman
,
M.
,
1995
, “
Wave Loadings on a Vertical Cylinder Due to Heave Motion
,”
Int. J. Math. Math. Sci.
,
18
(
1
), pp.
151
170
.
5.
Finnegan
,
W.
,
Meere
,
M.
, and
Goggins
,
J.
,
2013
, “
The Wave Excitation Forces on a Truncated Vertical Cylinder in Water of Infinite Depth
,”
J. Fluids Struct.
,
40
, pp.
201
213
.
6.
Jiang
,
S.
,
Gou
,
Y.
,
Teng
,
B.
, and
Ning
,
D.
,
2014
, “
Analytical Solution of a Wave Diffraction Problem on a Submerged Cylinder
,”
J. Eng. Mech.
,
140
(
1
), pp.
225
232
.
7.
Li
,
A.
, and
Liu
,
Y.
,
2019
, “
New Analytical Solutions to Water Wave Diffraction by Vertical Truncated Cylinders
,”
Int. J. Naval Architect. Ocean Eng.
,
11
(
2
), pp.
952
969
.
8.
Darwiche
,
M. K. M.
,
Williams
,
A. N.
, and
Wang
,
K. H.
,
1994
, “
Wave Interaction With Semiporous Cylindrical Breakwater
,”
J. Waterw. Port Coast. Ocean Eng.
,
120
(
4
), pp.
382
403
.
9.
Faltas
,
M. S.
,
1996
, “
On Oblique Waves Forcing by a Porous Cylindrical Wall
,”
Int. J. Math. Math. Sci.
,
19
(
2
), pp.
351
362
.
10.
Vijayalakshmi
,
K.
,
Sundaravadivelu
,
R.
,
Murali
,
K.
, and
Neelamani
,
S.
,
2008
, “
Hydrodynamics of a Concentric Twin Perforated Circular Cylinder System
,”
J. Waterw. Port Coast. Ocean Eng.
,
134
(
3
), pp.
166
177
.
11.
Liu
,
J.
,
Lin
,
G.
, and
Li
,
J.
,
2012
, “
Short-Crested Waves Interaction With a Concentric Cylindrical Structure With Double-Layered Perforated Walls
,”
Ocean Eng.
,
40
, pp.
76
90
.
12.
Ning
,
D. Z.
,
Zhao
,
X. L.
,
Teng
,
B.
, and
Johanning
,
L.
,
2017
, “
Wave Diffraction From a Truncated Cylinder With an Upper Porous Sidewall and an Inner Column
,”
Ocean Eng.
,
130
, pp.
471
481
.
13.
Sarkar
,
A.
, and
Bora
,
S. N.
,
2019
, “
Hydrodynamic Forces Due to Water Wave Interaction With a Bottom-Mounted Surface-Piercing Compound Porous Cylinder
,”
Ocean Eng.
,
171
, pp.
59
70
.
14.
Sarkar
,
A.
, and
Bora
,
S. N.
,
2020
, “
Hydrodynamic Forces and Moments Due to Interaction of Linear Water Waves With Truncated Partial-Porous Cylinders in Finite Depth
,”
J. Fluids Struct.
,
94
, p.
102898
.
15.
Mackay
,
E.
,
Shi
,
W.
,
Qiao
,
D.
,
Gabl
,
R.
,
Davey
,
T.
,
Ning
,
D.
, and
Johanning
,
L.
,
2021
, “
Numerical and Experimental Modelling of Wave Interaction With Fixed and Floating Porous Cylinders
,”
Ocean Eng.
,
242
, p.
110118
.
16.
Yao
,
Y.
,
Ning
,
D.
,
Deng
,
S.
,
Mayon
,
R.
, and
Qin
,
M.
,
2023
, “
Hydrodynamic Investigation on Floating Offshore Wind Turbine Platform Integrated With Porous Shell
,”
Energies
,
16
, p.
4376
.
17.
Bora
,
S. N.
,
Das
,
S.
,
Meylan
,
M. H.
,
Saha
,
S.
, and
Zheng
,
S.
,
2023
, “
Time-Dependent Water Wave Scattering by a Marine Structure Consisting of an Array of Compound Porous Cylinders
,”
Phys. Fluids
,
35
, p.
077103
.
18.
Huang
,
Z.
,
Liu
,
Y.
, and
Li
,
Y.
,
2011
, “
Hydraulic Performance and Wave Loadings of Perforated/Slotted Coastal Structures: A Review
,”
Ocean Eng.
,
38
(
10
), pp.
1031
1053
.
19.
Williams
,
A. N.
, and
Wang
,
K. H.
,
2003
, “
Flexible Porous Wave Barrier for Enhanced Wetlands Habitat Restoration
,”
J. Eng. Mech.
,
129
(
1
), pp.
1
8
.
20.
Evans
,
D. V.
,
1990
, “
The Use of Porous Screens as Wave Dampers in Narrow Wave Tanks
,”
J. Eng. Math.
,
24
(
3
), pp.
203
212
.
21.
Twu
,
S. W.
, and
Lin
,
D. T.
,
1991
, “
Wave Reflection by a Number of Thin Porous Plates Fixed in a Semi-infinitely Long Flume
,”
Coast. Eng. J.
, pp.
1046
1059
.
22.
Twu
,
S. W.
, and
Lin
,
D. T.
,
1991
, “
On a Highly Effective Wave Absorber
,”
Coast. Eng.
,
15
(
4
), pp.
389
405
.
23.
Liu
,
Y.
,
Li
,
Y. C.
, and
Teng
,
B.
,
2012
, “
Interaction Between Obliquely Incident Waves and an Infinite Array of Multi-chamber Perforated Caissons
,”
J. Eng. Math.
,
74
(
1
), pp.
1
18
.
24.
Liu
,
Y.
,
Li
,
Y. C.
, and
Teng
,
B.
,
2016
, “
Interaction Between Oblique Waves and Perforated Caisson Breakwaters With Perforated Partition Walls
,”
Eur. J. Mech.-B/Fluids
,
56
, pp.
143
155
.
25.
Bakhti
,
Y.
,
Chioukh
,
N.
,
Hamoudi
,
B.
, and
Boukhari
,
M.
,
2017
, “
A Multi-domain Boundary Element Method to Analyze the Reflection and Transmission of Oblique Waves From Double Porous Thin Walls
,”
J. Marine Sci. Appl.
,
16
(
3
), pp.
276
285
.
26.
Behera
,
H.
,
Gayathri
,
R.
, and
Selvan
,
S. A.
,
2020
, “
Wave Attenuation by Multiple Outer Porous Barriers in the Presence of an Inner Rigid Cylinder
,”
J. Waterw. Port Coast. Ocean Eng.
,
146
(
1
), p.
04019035
.
27.
Zhai
,
Z.
,
Zhao
,
W.
,
Wan
,
D.
, and
Liu
,
D.
,
2022
, “
Interaction of Solitary Wave With a Concentric Structure With Multiple Porous Outer Walls
,”
Ocean Eng.
,
260
, p.
111887
.
28.
Zhai
,
Z.
,
Zheng
,
S.
, and
Wan
,
D.
,
2022
, “
Interaction Between Solitary Waves and a Combined Structure of Two Concentric Asymmetric Porous Arc Walls
,”
Phys. Fluids
,
34
, p.
042103
.
29.
Mishra
,
S.
,
Saha
,
S.
,
Das
,
S.
, and
Bora
,
S. N.
,
2021
, “
Refection and Damping of Linear Water Waves by a Multi-porosity Vertical Porous Structure Placed on a Step-Type Raised Seabed
,”
Marine Syst. Ocean Technol.
,
16
, pp.
142
156
.
30.
Barman
,
K. K.
, and
Bora
,
S. N.
,
2021
, “
Linear Water Wave Interaction With a Composite Porous Structure in a Two-Layer Fluid Flowing Over a Step-Like Sea-Bed
,”
Geophys. Astrophys. Fluid Dyn.
,
115
(
5–6
), pp.
577
611
.
31.
Sahoo
,
G.
,
Singla
,
S.
, and
Martha
,
S. C.
,
2022
, “
Scattering of Oblique Water Waves by Thick Porous Structure and Thin Elastic Plate
,”
Ocean Eng.
,
248
, p.
110526
.
32.
Isaacson
,
M.
,
1979
, “
Wave Forces on Compound Cylinders
,”
Proceedings of Civil Engineering in the Oceans IV
,
San Franciscio, CA
,
Sept. 10–12
,
ASCE
, pp.
518
530
.
33.
Sarkar
,
A.
, and
Bora
,
S. N.
,
2021
, “
Interaction of Water Waves With a Semiporous Bottom-Mounted Cylindrical Storage Tank Containing a Cylindrical Pile
,”
J. Waterw. Port Coast. Ocean Eng.
,
147
(
6
), p.
04021029
.
34.
Sollitt
,
C. K.
, and
Cross
,
R. H.
,
1972
, “
Wave Transmission Through Permeable Breakwaters
,”
Proceedings 13th Coastal Engineering Conference of American Society for Civil Engineers
,
Vancouver, Canada
,
June 10–14
, pp.
1827
1846
.
You do not currently have access to this content.