Abstract

The paper reports on the continuous development of an automated optimization procedure for the design of offshore structure hulls. Advanced parametric design algorithms, numerical analysis of wave-body interaction, and formal multi-objective optimization are integrated into a computer aided design system that produces hull shapes with superior seakeeping qualities. By allowing multiple objectives in the procedure naval architects may pursue concurrent design objectives, e.g., minimizing heave motion while simultaneously maximizing deck load. The system develops a Pareto frontier of the best design alternatives for the user to choose from. Constraints are directly considered within the optimization algorithm, thus eliminating infeasible or unfit designs. The paper summarizes the new developments in the shape generation, illustrates the optimization procedure, and presents results of the multi-objective hull shape optimization.

1.
Fletcher
,
R.
, 1987,
Practical Methods of Optimization
, 2nd ed.,
Wiley
,
New York
.
2.
Chou
,
F.
, 1977, “
A Minimization Scheme for the Motions and Forces of an Ocean Platform in Random Seas
,”
Soc. Nav. Archit. Mar. Eng., Trans.
0081-1661,
85
, pp.
32
50
.
3.
Akagi
,
S.
, and
Ito
,
K.
, 1984, “
Optimal Design of Semisubmersible Form by Minimizing Its Motion in Random Seas
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
106
, pp.
23
30
.
4.
Saito
,
K.
, 1991, “
An Optimization Method for the Motions and Forces of an Ocean Structure in Waves
,” Institute of Naval Architecture and Ocean Engineering, Technische Universität Berlin, Technical Report No. 91/3.
5.
Kagemoto
,
H.
, 1992, “
Minimization of Wave Forces on an Array of Floating Bodies
,”
Appl. Ocean. Res.
0141-1187,
14
(
2
), pp.
83
92
.
6.
Vasconcellos
,
J.
, 1996, “
One Approach to TLP Preliminary Design Using Optimization Techniques
,”
Proceedings of Intenational Conference on Offshore Mechanics and Arctic Engineering (OMAE ’96)
, Vol.
I
, ASME, pp.
457
466
.
7.
Birk
,
L.
, 2006, “
Parametric Modeling and Shape Optimization of Offshore Structures
,”
International Journal of CAD/CAM
,
6
(
1
), pp.
29
40
.
8.
Newman
,
J.
, and
Sclavounos
,
P.
, 1988, “
The Computation of Wave Loads on Large Offshore Structures
,”
Proceedings of International Conference on Behaviour of Offshore Structures (BOSS ’88)
, pp.
605
622
.
9.
Clauss
,
G.
, and
Birk
,
L.
, 1996, “
Hydrodynamic Shape Optimization of Large Offshore Structures
,”
Appl. Ocean. Res.
0141-1187,
18
, pp.
157
171
.
10.
Birk
,
L.
, 1998, “
Hydrodynamic Shape Optimization of Offshore Structures
,” Ph.D. thesis, Technische Universität Berlin (D83), Berlin, Germany.
11.
Birk
,
L.
, and
Clauss
,
G.
, 2001, “
Automated Hull Optimization of Offshore Structures Based on Rational Seakeeping Criteria
,”
Proceedings of 11th International Offshore and Polar Engineering Conference (ISOPE-2001)
.
12.
Birk
,
L.
,
Clauss
,
G.
, and
Lee
,
J.
, 2004, “
Practical Application of Global Optimization to the Design of Offshore Structures
,”
Proceedings of 23rd International Conference on Offshore Mechanics and Arctic Engineering (OMAE ’04)
, ASME.
13.
Pareto
,
V.
, 1906,
Manual of Political Economy
,
Augustus M. Kelley
,
New York
, 1971 Translation of 1927 ed.
14.
Schaffer
,
J.
, 1984, “
Some Experiments in Machine Learning Using Vector Evaluated Genetic Algorithms
,” Ph.D. thesis, Vanderbilt University, Nashville, TN.
15.
Goldberg
,
D.
, 1989,
Genetic Algorithms for Search, Optimization, and Machine Learning
,
Addison-Wesley
,
Reading, MA
.
16.
Deb
,
K.
, 2001,
Multi-Objective Optimization Using Evolutionary Algorithms
,
Wiley
,
New York
.
17.
Zitzler
,
E.
,
Laumanns
,
M.
, and
Bleuler
,
S.
, 2004, “
A Tutorial on Evolutionary Multiobjective Optimization
,”
Metaheuristics for Multiobjective Optimisation
(
Lecture Notes in Economics and Mathematical Systems
Vol.
535
).
X.
Gandibleux
,
M.
Sevaux
,
K.
Sörensen
, and
X.
T’kindt
, eds.,
Springer
,
Berlin
, pp.
3
37
.
18.
Deb
,
K.
,
Mohan
,
M.
, and
Mishra
,
S.
, 2003, “
A Fast Multi-Objective Evolutionary Algorithm for Finding Well-Spread Pareto-Optimal Solutions
,” Kanpur Genetic Algorithms Laboratory (KanGAL), Indian Institute of Technology Kanpur, Technical Report No. KanGAL 20003002.
19.
Laumanns
,
M.
,
Thiele
,
L.
,
Deb
,
K.
, and
Zitzler
,
E.
, 2002, “
Combining Convergence and Diversity in Evolutionary Multi-Objective Optimization
,”
Evol. Comput.
1063-6560,
10
(
3
), pp.
263
282
.
20.
van Rossum
,
G.
, 2000,
Python Reference Manual, Version 2
, BeOpen PythonLabs.
21.
Jones
,
E.
,
Oliphant
,
T.
,
Peterson
,
P.
, et al.
, 2006, “
SciPy: Open Source Scientific Tools for Python
,” http://www.scipy.orghttp://www.scipy.org
22.
Nielsen
,
O.
, 2004, “
Pypar—Parallel Programming in the Spirit of Python!
,” http://datamining.anu.edu.au/~ole~pypar/http://datamining.anu.edu.au/~ole~pypar/
23.
Huang
,
L.
, 1999, “
Anwendung von Freiformflächen beim Parameter-gesteuerten Entwurf von Offshore-Plattformen
,” Ph.D. thesis, Technische Universität Berlin (D83), Berlin, Germany, in German.
24.
Birk
,
L.
, and
Clauss
,
G.
, 2002, “
Parametric Hull Design and Automated Optimization of Offshore Structures
,”
Tenth Congress of International Maritime Association of the Mediterranean (IMAM2002
).
25.
Nowacki
,
H.
, and
Reed
,
A.
, 1974, “
Interactive Creation of Fair Ship Lines
,”
J. Ship Res.
0022-4502,
18
(
2
), pp.
96
112
.
26.
Gregory
,
J.
, 1986, “
N-Sided Surface Patches
,” in
The Mathematics of Surfaces
,
J.
Gregory
, ed.,
Oxford University Press
,
New York
, pp.
217
232
.
27.
Newman
,
J.
, and
Lee
,
C.-H.
, 2002, “
Boundary-Element Methods in Offshore Structure Analysis
,”
ASME J. Offshore Mech. Arct. Eng.
0892-7219,
124
(
2
), pp.
81
89
.
28.
Hogben
,
N.
, and
Lumb
,
F.
, 1967,
Ocean Wave Statistics
,
Her Majesty’s Stationery Office
,
London
.
29.
St. Denis
,
M.
, and
Pierson
,
W.
, 1953, “
On the Motions of Ships in Confused Seas
,”
Soc. Nav. Archit. Mar. Eng., Trans.
0081-1661,
61
, pp.
280
357
.
30.
Barltrop
,
N.
, and
Adams
,
A.
, 1991,
Dynamics of Fixed Marine Structures
, 3rd ed.,
Butterworth-Heinemann
,
Oxford
.
You do not currently have access to this content.