Abstract

Over the last decade, several international thermalhydraulics benchmarking efforts have been carried out to support the development of the Generation IV supercritical water-cooled reactor (SCWR) concept. These benchmarking efforts aimed to assess the readiness of computer codes to predict the thermalhydraulics behavior of supercritical fluids for nuclear fuel assembly applications. The results from the benchmarking also shed light on knowledge gaps. Throughout the years, several advancements in this area have been achieved, resulting in relevant conclusions and observations. Furthermore, experimental campaigns have been carried out worldwide to further our knowledge on the thermalhydraulics of supercritical fluids. The nuclear industry uses the subchannel approach to study the thermalhydraulics behavior of nuclear fuel assemblies in detail. In Canada, the subchannel code advanced solution of subchannel equations in reactor thermalhydraulics—pressure velocity (ASSERT-PV) is the qualified code for subchannel applications. ASSERT-PV was modified to handle supercritical conditions, resulting in an interim code version. This publication presents relevant subchannel analyses using the interim supercritical version of ASSERT-PV for fuel assemblies cooled with supercritical fluids.

References

1.
Oka
,
Y.
,
Koshizuka
,
S.
,
Ishiwatari
,
Y.
, and
Yamaji
,
A.
,
2010
,
Super Light Water Reactors and Super Fast Reactors: Supercritical-Pressure Light Water Cooled Reactors
,
Springer
,
Germany
.
2.
GEN IV International Forum
,
2022
, “
GIF Portal - Portal Site Public Home
,” accessed Mar. 9, 2022, https://www.gen-4.org/gif/jcms/c_9260/public
3.
ECC Smart
,
2022
, “
Joint European Canadian Chinese Development of Small Modular Reactor Technology (ECC Smart)
,” ECC Smart, Brussels, Belgium, accessed Mar. 9, 2022, https://ecc-smart.eu/
4.
IAEA
,
2023
, “
New CRP: Advancing Thermal-Hydraulic Models and Predictive Tools for Design and Operation of SCWR Prototypes (I31034)
,” International Atomic Energy Agency, Vienna, Austria, accessed Jan. 19, 2023, https://www.iaea.org/newscenter/news/new-crp-advancing-thermal-hydraulic-models-and-predictive-tools-for-design-and-operation-of-scwr-prototypes-i31034
5.
Nava-Dominguez
,
A.
,
Rao
,
Y. F.
, and
Waddington
,
G. M.
,
2014
, “
Assessment of Subchannel Code ASSERT-PV for Flow-Distribution Predictions
,”
Nucl. Eng. Des.
,
275
, pp.
122
132
.10.1016/j.nucengdes.2014.05.001
6.
Carver
,
M. B.
,
Tahir
,
A.
,
Kiteley
,
J. C.
,
Banas
,
A. O.
,
Rowe
,
D. S.
, and
Midvidy
,
W. I.
,
1990
, “
Simulation of Flow and Phase Distribution in Vertical and Horizontal Bundles Using the ASSERT-4 Subchannel Code
,”
Nucl. Eng. Des.
,
122
(
1–3
), pp.
413
424
.10.1016/0029-5493(90)90224-L
7.
Wheeler
,
C. L.
,
Stewart
,
C. W.
,
Cena
,
R. J.
,
Rowe
,
D. S.
, and
Sutey
,
A. M.
,
1976
, “
COBRA-IV-I: An Interim Version of COBRA for Thermal-Hydraulic Analysis of Rod-Bundle Nuclear Fuel Elements and Cores
,” Report No. BNWL-1962,
Pacific Northwest National Laboratory
,
Battelle, WA
.
8.
Rao
,
Y. F.
,
Onder
,
E. N.
, and
Podila
,
K.
,
2016
, “
Assessment of Subchannel Code ASSERT-PV for Supercritical Applications
,”
J. Supercrit. Fluids
,
117
, pp.
164
171
.10.1016/j.supflu.2016.06.016
9.
Misawa
,
T.
,
Nakatsuka
,
H.
,
Yoshida
,
K.
,
Takase
,
K.
,
Ezato
,
Y.
,
Seki
,
M.
, and
Dairaku
,
S.
,
2009
, “
Heat Transfer Experiments and Numerical Analysis of Supercritical Pressure Water in Seven-Rod Test Bundle
,”
Proceedings of 13th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-13)
, Kanazawa, Japan, Sept. 27–Oct. 2.
10.
Nava Dominguez
,
A.
, and
Leung
,
L.
,
2019
, “
Benchmarking the Subchannel Code ASSERT-PV Code Using the University of Wisconsin-Madison Supercritical Fluid Experiments
,”
Proceedings of the 9th International Symposium on Super-Critical Water-Cooled Reactors (ISSCWR-9)
, Vancouver, BC, Canada, Mar. 10–14, Paper No. 27.
11.
International Atomic Energy Agency
,
2020
, “
Understanding and Prediction of Thermohydraulic Phenomena Relevant to Supercritical Water Cooled Reactors (SCWRs)
,” IAEA, Vienna, Austria, Report No.
IAEA-Tecdoc-1900
.https://wwwpub.iaea.org/MTCD/Publications/PDF/TE-1900web.pdf
12.
Zhao
,
X.
,
2023
, “
Report on the Results of the Benchmark Exercise
,” European Union Funding & Tenders Portal, European Union, accessed Sept. 24, 2024, https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/myarea/project/945234/program/31045243/consortium
13.
Jackson
,
J. D.
,
2002
, “
Consideration of the Heat Transfer Properties of Supercritical Pressure Water in Connection With the Cooling of Advanced Nuclear Reactors
,”
Proceedings of the 13th Pacific Basin Nuclear Conference
, Shenzhen, China, Oct. 21–25, Paper No. 240.
14.
Mokry
,
S.
,
Farah
,
F.
,
King
,
K.
,
Gupta
,
S.
, and
Pioro
,
I.
,
2009
, “
Development of Supercritical Water Heat-Transfer Correlation for Vertical Bare Tubes
,”
Proceedings of the Nuclear Energy for New Europe 2009 International Conference
, Bled, Slovenia, Sept. 14–17, Paper No. 21.
15.
Bishop
,
A.
,
Sandberg
,
R.
, and
Tong
,
L.
,
1964
, “
Forced Convection Heat Transfer to Water at Near-Critical Temperatures and Supercritical Pressures
,”
Westinghouse Electric Corporation, Atomic Power Division
, Pittsburgh, PA.
16.
Kurganov
,
V. A.
, and
Ankudinov
,
V. B.
,
1985
, “
Calculation of Normal and Deterioration Heat Transfer in Tubes With Turbulent Flow of Liquids in the Near Critical and Vapour Region of State
,”
Therm. Eng.
,
32
(
6
), pp.
332
336
.
17.
Swenson
,
H. S.
,
Carver
,
J. R.
, and
Kakarala
,
C. R.
,
1965
, “
Heat Transfer to Supercritical Water in Smooth-Bore Tubes
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
87
(
4
), pp.
477
483
.10.1115/1.3689139
18.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
,
1985
, “
Heat Transfer in Automobile Radiators of the Tubular Type
,”
Int. Commun. Heat Mass Transfer
,
12
(
1
), pp.
3
22
.10.1016/0735-1933(85)90003-X
19.
IAEA
,
2023
, “
Understanding and Prediction of Thermohydraulic Phenomena Relevant to Supercritical Water Cooled Reactors (SCWRs)
,” International Atomic Energy Agency, Vienna, Austria, accessed Jan. 19, 2023, https://www.iaea.org/publications/13636/understanding-and-prediction-of-thermohydraulic-phenomena-relevant-to-supercritical-water-cooled-reactors-scwrs
20.
White
,
F. M.
,
1986
,
Fluid Mechanics
, 2nd ed.,
McGraw-Hill Book Company
, New York.
21.
Carlucci
,
L. N.
,
Hammouda
,
N.
, and
Rowe
,
D. S.
,
2004
, “
Two-Phase Turbulent Mixing and Buoyancy Drift in Rod Bundles
,”
Nucl. Eng. Des.
,
227
(
1
), pp.
65
84
.10.1016/j.nucengdes.2003.08.003
22.
Rogers
,
T. J.
, and
Tahir
,
A. E. E.
,
1975
, “
Turbulent Interchange Mixing in Rod Bundles and the Role of Secondary Flows
,”
ASME
Paper No. 75-HT-31.10.1115/75-HT-31
23.
Jackson
,
J. D.
,
2009
, “
Validation of an Extended Heat Transfer Equation for Fluids at Supercritical Pressure
,”
Proceedings of the 4th International Symposium on Supercritical Water-Cooled Reactors (ISSCWR-4)
, Heidelberg, Germany, March 8–11, p.
24
.
24.
Razumovskiy
,
V. G.
,
Pis'mennyi
,
E. N.
,
Sidawi
,
K.
,
Pioro
,
I. L.
, and
Koloskov
,
A. E.
,
2016
, “
Experimental Heat Transfer in an Annular Channel and 3-Rod Bundle Cooled With Upward Flow of Supercritical Water
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
2
(
1
), p.
011010
.10.1115/1.4031818
25.
Razumovskiy
,
V. G.
,
Pis'mennyy
,
E. N.
,
Koloskov
,
A. E.
, and
Pioro
,
I. L.
,
2008
, “
Heat Transfer to Supercritical Water in Vertical 7-Rod Bundle
,”
ASME
Paper No. ICONE16-48954.10.1115/ICONE16-48954
26.
Wang
,
H.
,
Bi
,
Q.
,
Wang
,
L.
,
Lv
,
H.
, and
Leung
,
L. K. H.
,
2014
, “
Experimental Investigation of Heat Transfer From a 2 × 2 Rod Bundle to Supercritical Pressure Water
,”
Nucl. Eng. Des.
,
275
, pp.
205
218
.10.1016/j.nucengdes.2014.04.036
27.
Pioro
,
I. L.
, and
Khartabil
,
H. F.
,
2005
, “
Experimental Study on Heat Transfer to Supercritical Carbon Dioxide Flowing Upward in A Vertical Tube
,”
Proceedings of 13th International Conference on Nuclear Engineering Abstracts (ICONE-13)
, Beijing, China, May 16–20, Paper No. 50118.
28.
Nava-Dominguez
,
A.
,
2020
, “
Evaluation of Friction-Factor Correlations at Supercritical Water Conditions in Support of the Canadian SCWR
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
6
(
3
), p.
031113
.10.1115/1.4046783
29.
Pioro
,
I. L.
, and
Duffey
,
R. B.
,
2007
,
Heat Transfer and Hydraulic Resistance at Supercritical Pressures in Power Engineering Applications
,
ASME Press
, New York.
30.
Kirillov
,
P. L.
,
2000
, “
Heat and Mass Transfer at Supercritical Parameters (the Short Review of Researches in Russia: Theory and Experiments)
,”
Proceedings of the 1st International Symposium on Supercritical Water-Cooled Reactor Design and Technology (SCR-2000)
, Tokyo, Japan, Nov. 6–9, p.
105
.
31.
Razumovskiy
,
V. G.
,
Omatskiy
,
A. P.
, and
Maevskiy
,
E. M.
,
1984
, “
Hydraulic Resistance and Heat Transfer of Smooth Channels With Turbulent Flow of Water of Supercritical Pressure
,”
Therm. Eng.
,
31
, pp.
109
113
.
32.
Yamashita
,
T.
,
Mori
,
H.
,
Yoshida
,
S.
, and
Ohno
,
M.
,
2003
, “
Heat Transfer and Pressure Drop of a Supercritical Pressure Fluid Flowing in a Tube of Small Diameter
,”
Mem. Fac. Eng., Kyushu Univ.
,
63
(
4
), pp.
227
244
.
33.
Selander
,
W. N.
,
1978
, “
Explicit Formulas for the Computation of Friction Factors in Turbulent Pipe Flow
,” Report No. AECL-6354,
Atomic Energy of Canada Limited
, Chalk River, ON, Canada.
34.
Groeneveld
,
D. C.
, and
Leung
,
K. L.
,
1997
, “
Compendium of Thermalhydraulic Correlations and Fluid Properties (Version 1991, Rev. 2)
,” Candu Owners Group, Toronto, ON, Canada, Report No. COG-90-86CANDU.
35.
Miller
,
D. S.
,
1990
,
Internal Flow Systems: Design and Performance Prediction
,
Gulf Publishing Co
,
Houston
.
36.
Rehme
,
K.
,
1992
, “
The Structure of Turbulence in Rod Bundles and the Implications on Natural Mixing Between the Subchannels
,”
Int. J. Heat Mass Transfer
,
35
(
2
), pp.
567
581
.10.1016/0017-9310(92)90291-Y
37.
Idelchik
,
I. E.
,
2007
,
Handbook of Hydraulic Resistance
, 3rd ed.,
Begell House
, Danbury, CT.
You do not currently have access to this content.