Migration of cancer cells from the primary organ site via the bloodstream to distant sites is critical to the development of malignant metastasis and is in part determined by soluble host factors in the serum. Conventional Boyden chamber assays to evaluate cell motility require high volumes of reagents and are impractical for high-throughput analysis. We have designed and evaluated a poly-dimethylsiloxane (PDMS) microfluidic device in order to systematically study cancer cell migration. Photolithography and soft lithography processes were used to fabricate the PDMS devices from a negative photoresist (SU-8) mold. The device provides two separate identical chambers that are interconnected by an array of identical narrow channels, 10μm high, 25μm wide, and 1000μm long. One chamber is seeded with cancer cells whose migration characteristics are to be evaluated, while the other chamber contains media with chemoattractants toward which the cancer cells migrate. In this microfluidic chamber model, the migration of cancer cells within and across the microfluidic channels over a prescribed time was quantified using time-lapse photographs. The microfluidic chamber is a cost-effective platform that uses small volumes of reagents, can maintain stable chemokine gradients, allow real-time quantitative study of cancer cell migration, and provide information about cellular dynamics and biomechanical analysis. This work demonstrated the utility of the microfluidic device as a platform to study cancer cell migration as well as the potential applications in the identification of specific chemokine agents and development of drugs targeting cell migration.

1.
Loberg
,
R. D.
,
Logothetis
,
C. J.
,
Keller
,
E. T.
, and
Pienta
,
K. J.
, 2005, “
Pathogenesis and Treatment of Prostate Cancer Bone Metastases: Targeting the Lethal Phenotype
,”
J. Clin. Oncol.
0732-183X,
23
(
32
), pp.
8232
8241
.
2.
Saad
,
F.
,
Perrotte
,
P.
,
Bnard
,
F.
,
McCormack
,
M.
, and
Karakiewicz
,
P. I.
, 2005, “
Bone Health in Men With Prostate Cancer: Diagnostic and Therapeutic Considerations
,”
Can. J. Urol.
,
12
, pp.
9
15
.
3.
Vela
,
I.
,
Gregory
,
L.
,
Gardiner
,
E. M.
,
Clements
,
J. A.
, and
Nicol
,
D. L.
, 2007, “
Bone and Prostate Cancer Cell Interactions in Metastatic Prostate Cancer
,”
BJU Int.
1464-4096,
99
(
4
), pp.
735
742
.
4.
Ferrer
,
F. A.
,
Miller
,
L. J.
,
Andrawis
,
R. I.
,
Kurtzman
,
S. H.
,
Albertsen
,
P. C.
,
Laudone
,
V. P.
, and
Kreutzer
,
D. L.
, 1998, “
Angiogenesis and Prostate Cancer: In Vivo and In Vitro Expression of Angiogenesis Factors by Prostate Cancer Cells
,”
Urology
0090-4295,
51
(
1
), pp.
161
167
.
5.
Kaminska
,
B.
,
Wesolowska
,
A.
, and
Danilkiewicz
,
M.
, 2005, “
Tgf-β Signalling and Its Role in Tumour Pathogenesis
,”
Acta Biochim. Pol.
0001-527X,
52
(
2
), pp.
329
337
.
6.
Lee
,
H. -L.
,
Pienta
,
K. J.
,
Kim
,
W. -J.
, and
Cooper
,
C. R.
, 2003, “
The Effect of Bone Associated Growth Factors and Cytokines on the Growth of Prostate Cancer Cells Derived From Soft Tissue Versus Bone Metastases In Vitro
,”
Int. J. Oncol.
1019-6439,
22
(
4
), pp.
921
926
.
7.
Loberg
,
R. D.
,
Day
,
L. L.
,
Harwood
,
J.
,
Ying
,
C.
,
John
,
L. N. S.
,
Giles
,
R.
,
Neeley
,
C. K.
, and
Pienta
,
K. J.
, 2006, “
CCL2 is a Potent Regulator of Prostate Cancer Cell Migration and Proliferation
,”
Neoplasia
1522-8002,
8
(
7
), pp.
578
586
.
8.
Lu
,
Y.
,
Cai
,
Z.
,
Galson
,
D. L.
,
Xiao
,
G.
,
Liu
,
Y.
,
George
,
D. E.
,
Melhem
,
M. F.
,
Yao
,
Z.
, and
Zhang
,
J.
, 2006, “
Monocyte Chemotactic Protein-1 (MCP-1) Acts as a Paracrine and Autocrine Factor for Prostate Cancer Growth and Invasion
,”
Prostate
0270-4137,
66
(
12
), pp.
1311
1318
.
9.
Ritchie
,
C. K.
,
Andrews
,
L. R.
,
Thomas
,
K. G.
,
Tindall
,
D. J.
, and
Fitzpatrick
,
L. A.
, 1997, “
The Effects of Growth Factors Associated With Osteoblasts on Prostate Carcinoma Proliferation and Chemotaxis: Implications for the Development of Metastatic Disease
,”
Endocrinology
0013-7227,
138
(
3
), pp.
1145
1150
.
10.
Singh
,
S.
,
Singh
,
U. P.
,
Grizzle
,
W. E.
, and
Lillard
,
J. W.
, 2004, “
CXCL12-CXCR4 Interactions Modulate Prostate Cancer Cell Migration, Metalloproteinase Expression and Invasion
,”
Lab. Invest.
0023-6837,
84
(
12
), pp.
1666
1676
.
11.
Marelli
,
M. M.
,
Moretti
,
R. M.
,
Procacci
,
P.
,
Motta
,
M.
, and
Limonta
,
P.
, 2006, “
Insulin Like Growth Factor-I Promotes Migration in Human Androgen-Independent Prostate Cancer Cells via the Alpha-v-Beta-3 Integrin and PI3-K/Akt Signaling
,”
Int. J. Oncol.
1019-6439,
28
(
3
), pp.
723
730
.
12.
Michalaki
,
V.
,
Syrigos
,
K.
,
Charles
,
P.
, and
Waxman
,
J.
, 2004, “
Serum Levels of IL-6 and TNF-Alpha Correlate With Clinicopathological Features and Patient Survival in Patients With Prostate Cancer
,”
Br. J. Cancer
0007-0920,
90
(
12
), pp.
2312
2316
.
13.
Wikström
,
P.
,
Stattin
,
P.
,
Franck-Lissbrant
,
I.
,
Damber
,
J. E.
, and
Bergh
,
A.
, 1998, “
Transforming Growth Factor β1 Is Associated With Angiogenesis, Metastasis, and Poor Clinical Outcome in Prostate Cancer
,”
Prostate
0270-4137,
37
(
1
), pp.
19
29
.
14.
Yang
,
S.
,
Zhong
,
C.
,
Frenkel
,
B.
,
Reddi
,
A. H.
, and
Roy-Burman
,
P.
, 2005, “
Diverse Biological Effect and smad Signaling of Bone Morphogenetic Protein 7 in Prostate Tumor Cells
,”
Cancer Res.
0008-5472,
65
(
13
), pp.
5769
5777
.
15.
Jeon
,
N. L.
,
Baskaran
,
H.
,
Dertinger
,
S. K. W.
,
Whitesides
,
G. M.
,
de Water
,
L. V.
, and
Toner
,
M.
, 2002, “
Neutrophil Chemotaxis in Linear and Complex Gradients of Interleukin-8 Formed in a Microfabricated Device
,”
Nat. Biotechnol.
1087-0156,
20
(
8
), pp.
826
830
.
16.
Lin
,
F.
,
Nguyen
,
C. M.-C.
,
Wang
,
S. -J.
,
Saadi
,
W.
,
Gross
,
S. P.
, and
Jeon
,
N. L.
, 2005, “
Neutrophil Migration in Opposing Chemoattractant Gradients Using Microfluidic Chemotaxis Devices
,”
Ann. Biomed. Eng.
0090-6964,
33
(
4
), pp.
475
482
.
17.
Taylor
,
A. M.
,
Rhee
,
S. W.
, and
Jeon
,
N. L.
, 2006, “
Microfluidic Chambers for Cell Migration and Neuroscience Research
,”
Methods Mol. Biol.
1064-3745,
321
, pp.
167
177
.
18.
Lin
,
F.
,
Nguyen
,
C. M.-C.
,
Wang
,
S. -J.
,
Saadi
,
W.
,
Gross
,
S. P.
, and
Jeon
,
N. L.
, 2004, “
Effective Neutrophil Chemotaxis Is Strongly Influenced by Mean IL-8 Concentration
,”
Biochem. Biophys. Res. Commun.
0006-291X,
319
(
2
), pp.
576
581
.
19.
Lin
,
F.
, and
Butcher
,
E.
, 2006, “
T Cell Chemotaxis in a Simple Microfluidic Device
,”
Lab Chip
1473-0197,
6
(
11
), pp.
1462
1469
.
20.
Martin
,
R. S.
,
Root
,
P. D.
, and
Spence
,
D. M.
, 2006, “
Microfluidic Technologies as Platforms for Performing Quantitative Cellular Analyses in an In Vitro Environment
,”
Analyst (Cambridge, U.K.)
0003-2654,
131
(
11
), pp.
1197
1206
.
21.
Quake
,
S. R.
, and
Scherer
,
A.
, 2000, “
From Micro- to Nanofabrication With Soft Materials
,”
Science
0036-8075,
290
(
5496
), pp.
1536
1540
.
22.
Walker
,
G. M.
,
Sai
,
J.
,
Richmond
,
A.
,
Stremler
,
M.
,
Chung
,
C. Y.
, and
Wikswo
,
J. P.
, 2005, “
Effects of Flow and Diffusion on Chemotaxis Studies in a Microfabricated Gradient Generator
,”
Lab Chip
1473-0197,
5
(
6
), pp.
611
618
.
23.
Li
,
J.
,
LeRiche
,
T.
,
Tremblay
,
T. -L.
,
Wang
,
C.
,
Bonneil
,
E.
,
Harrison
,
D. J.
, and
Thibault
,
P.
, 2002, “
Application of Microuidic Devices to Proteomics Research: Identification Of Trace-Level Protein Digests and Affinity Capture of Target Peptides
,”
Mol. Cell Proteomics
1535-9476,
1
(
2
), pp.
157
168
.
24.
Saadi
,
W.
,
Rhee
,
S. W.
,
Lin
,
F.
,
Vahidi
,
B.
,
Chung
,
B. G.
, and
Jeon
,
N. L.
, 2007, “
Generation of Stable Concentration Gradients in 2D and 3D Environments Using a Microfluidic Ladder Chamber
,”
Biomed. Microdevices
1387-2176,
9
(
5
), pp.
627
635
.
25.
Saadi
,
W.
,
Wang
,
S. -J.
,
Lin
,
F.
, and
Jeon
,
N. L.
, 2006, “
A Parallel-Gradient Microfluidic Chamber for Quantitative Analysis of Breast Cancer Cell Chemotaxis
,”
Biomed. Microdevices
1387-2176,
8
(
2
), pp.
109
118
.
26.
2008,
Microfluidics for Biological Applications
, edited by
W. -C.
Tian
and
E.
Finehout
,
Springer Science+Business Media
,
New York
.
27.
Schaff
,
U. Y.
,
Xing
,
M. M. Q.
,
Lin
,
K. K.
,
Pan
,
N.
,
Jeon
,
N. L.
, and
Simon
,
S. I.
, 2007, “
Vascular Mimetics Based on Microfluidics for Imaging the Leukocyte-Endothelial Inflammatory Response
,”
Lab Chip
1473-0197,
7
(
4
), pp.
448
456
.
28.
Wang
,
S. -J.
,
Saadi
,
W.
,
Lin
,
F.
,
Nguyen
,
C. M.-C.
, and
Jeon
,
N. L.
, 2004, “
Differential Effects of EGF Gradient Profiles on MDA-MB-231 Breast Cancer Cell Chemotaxis
,”
Exp. Cell Res.
0014-4827,
300
(
1
), pp.
180
189
.
29.
Madou
,
M. J.
, 2002,
Fundamentals of Microfabrication: The Science of Miniaturization
,
CRC
,
Boca Raton, FL
.
30.
Chang-Yen
,
D. A.
,
Eich
,
R. K.
, and
Gale
,
B. K.
, 2005, “
A Monolithic PDMS Waveguide System Fabricated Using Soft-Lithography Techniques
,”
J. Lightwave Technol.
0733-8724,
23
(
6
), pp.
2088
.
31.
Mata
,
A.
,
Fleischman
,
A. J.
, and
Roy
,
S.
, 2005, “
Characterization of Polydimethylsiloxane (PDMS) Properties for Biomedical Micro/Nanosystems
,”
Biomed. Microdevices
1387-2176,
7
(
4
), pp.
281
293
.
32.
Huggins
,
C.
,
Rao
,
S. M. N.
,
Nguyen
,
K.
, and
Chiao
,
J. -C.
, 2008, “
The Analysis of Surface Treatment of PDMS on Prostate Cancer and Smooth Muscle Cells
,”
Proc. SPIE
0277-786X,
7269
, p.
726914
.
33.
Gillmor
,
S. D.
,
Larson
,
B. J.
,
Braun
,
J. M.
,
Mason
,
C. E.
,
Cruz-Barba
,
L. E.
,
Denes
,
F.
, and
Lagally
,
M. G.
, 2002, “
Low-Contact-Angle Polydimethyl Siloxane (PDMS) Membranes for Fabricating Micro-Bioarrays
,”
Proceedings of the Second Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology
, IEEE Engineering in Medicine and Biology Society, p.
51
.
34.
Peterson
,
S. L.
,
McDonald
,
A.
,
Gourley
,
P. L.
, and
Sasaki
,
D. Y.
, 2005, “
Poly(dimethylsiloxane) Thin Films as Biocompatible Coatings for Microfluidic Devices: Cell Culture and Flow Studies With Glial Cells
,”
J. Biomed. Mater. Res.
0021-9304,
72A
(
1
), pp.
10
18
.
35.
Christiansen
,
J. J.
, and
Rajasekaran
,
A. K.
, 2006, “
Reassessing Epithelial to Mesenchymal Transition as a Prerequisite for Carcinoma Invasion and Metastasis
,”
Cancer Res.
0008-5472,
66
(
17
), pp.
8319
8326
.
36.
Potenta
,
S.
,
Zeisberg
,
E.
, and
Kalluri
,
R.
, 2008, “
The Role of Endothelial-to-Mesenchymal Transition in Cancer Progression
,”
Br. J. Cancer
0007-0920,
99
, pp.
1375
1379
.
37.
Tse
,
J. C.
, and
Kalluri
,
R.
, 2007, “
Mechanisms of Metastasis: Epithelial-to-Mesenchymal Transition and Contribution of Tumor Microenvironment
,”
J. Cell. Biochem.
0730-2312,
101
, pp.
816
829
.
You do not currently have access to this content.