Bacterial cellulose (BC) and gelatin are well-known biomaterials. The novel bacterial cellulose/gelatin composite scaffolds were prepared using aqueous gelatin solution and bacterial cellulose excreted by Acetobacter xylinum. The prepared bacterial cellulose/gelatin scaffolds were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, mechanical test, swelling, and thermal studies. The morphology of these bacterial cellulose/gelatin scaffolds indicated that the gelatin molecules could penetrate well between the individual nanofibers of the bacterial cellulose. With the incorporation of gelatin in the bacterial cellulose, the crystallinity index tended to decrease while the thermal stability was improved. After the incorporation of gelatin in the bacterial cellulose, Young’s modulus of the composite was increased from 3.7 GPa to 3.9 GPa, while the tensile strength and strain at break point were decreased from 170 MPa (7.5%) to 114 MPa (4%), respectively. The swelling behavior test indicated that the water uptake capacity of the composite was only half of the pure bacterial cellulose. Cell adhesion studies were carried out using 3T3 fibroblast cells. The cells incubated with BC/gelatin scaffolds for 48 h were capable of forming cell adhesion and proliferation. It showed much better biocompatibility than pure bacterial cellulose. So, the prepared BC/gelatin scaffolds are bioactive and may be suitable for cell adhesion/attachment, suggesting that these scaffolds can be used for wound dressing or tissue engineering scaffolds. Therefore, these novel BC/gelatin scaffolds are useful for biomedical applications.

1.
Ross
,
P.
,
Mayer
,
R.
, and
Benziman
,
M.
, 1991, “
Cellulose Biosynthesis and Function in Bacteria
,”
Microbiol. Rev.
0146-0749,
55
, pp.
35
58
.
2.
Brown
,
R. M.
, Jr.
, and
Saxena
,
I. M.
, 2007,
Cellulose: Molecular and Structural Biology
,
Springer
,
New York
.
3.
Fontana
,
J. D.
,
de Sousa
,
A. M.
,
Fontana
,
C. K.
,
Torriani
,
I. L.
,
Moreschi
,
J. C.
,
Gallotti
,
B. J.
,
de Sousa
,
S. J.
,
Narcisco
,
G. P.
,
Bichara
,
J. A.
, and
Farah
,
L. F.
, 1990, “
Acetobacter Cellulose Pellicle as a Temporary Skin Substitute
,”
Appl. Biochem. Biotechnol.
0273-2289,
24–25
(
1
), pp.
253
264
.
4.
Klemm
,
D.
,
Schumann
,
D.
,
Udhardt
,
U.
, and
Marsch
,
S.
, 2001, “
Bacterial Synthesized Cellulose—Artificial Blood Vessels for Microsurgery
,”
Prog. Polym. Sci.
0079-6700,
26
, pp.
1561
1603
.
5.
Svensson
,
A.
,
Nicklasson
,
E.
,
Harrah
,
T.
,
Panilaitis
,
B.
,
Kaplan
,
D. L.
,
Brittberg
,
M.
, and
Gatenholm
,
P.
, 2005, “
Bacterial Cellulose as a Potential Scaffold for Tissue Engineering of Cartilage
,”
Biomaterials
0142-9612,
26
, pp.
419
431
.
6.
Alvarez
,
O. M.
,
Patel
,
M.
,
Booker
,
J.
, and
Markowitz
,
L.
, 2004, “
Effectiveness of a Biocellulose Wound Dressing
,”
Wounds
,
16
, pp.
224
233
.
7.
Jonas
,
R.
, and
Farah
,
L. F.
, 1998, “
Production and Application of Microbial Cellulose
,”
Polym. Degrad. Stab.
0141-3910,
59
, pp.
101
106
.
8.
Guidoin
,
R.
,
Marceau
,
D.
,
Rao
,
T. J.
,
King
,
M.
,
Merhi
,
Y.
, and
Roy
,
P. E.
, 1987, “
In Vivo and In Vitro Characterization of an Impervious Polyester Arterial Prosthesis: The Gelseal Triaxial® Graft
,”
Biomaterials
0142-9612,
8
, pp.
433
441
.
9.
Tabata
,
Y.
,
Hijikata
,
S.
, and
Ikada
,
Y.
, 1994, “
Enhanced Vascularization and Tissue Granulation by Basic Fibroblast Growth Factor Impregnated in Gelatin Hydrogels
,”
J. Controlled Release
0168-3659,
31
, pp.
189
199
.
10.
Yaylaoglu
,
M. B.
,
Korkusuz
,
P.
,
Ors
,
U.
,
Korkusuz
,
F.
, and
Hasirci
,
V.
, 1999, “
Development of a Calcium Phosphate–Gelatin Composite as a Bone Substitute and Its Use in Drug Release
,”
Biomaterials
0142-9612,
20
, pp.
711
719
.
11.
Yoon
,
S. H.
,
Jin
,
H. -J.
,
Kook
,
M. -C.
, and
Pyun
,
Y. R.
, 2006, “
Electrically Conductive Bacterial Cellulose by Incorporation of Carbon Nanotubes
,”
Biomacromolecules
1525-7797,
7
, pp.
1280
1284
.
12.
Seves
,
A.
,
Testa
,
G.
,
Bonfatti
,
A. M.
,
Paglia
,
E. D.
,
Selli
,
E.
, and
Marcandalli
,
B.
, 2001, “
Characterization of Native Cellulose/Poly(ethylene glycol) Films
,”
Macromol. Mater. Eng.
1438-7492,
286
, pp.
524
528
.
13.
Saxena
,
I. M.
,
Kudlicka
,
K.
,
Okuda
,
K.
, and
Brown
,
R. M.
, Jr.
, 1994, “
Characterization of Genes in the Cellulose-Synthesizing Operon (ACS Operon) of Acetobacter Xyinum: Implications for Cellulose Crystallization
,”
J. Bacteriol.
0021-9193,
176
, pp.
5735
5752
.
14.
Jung
,
H. Z.
,
Benerito
,
R. R.
,
Berni
,
R. J.
, and
Mitcham
,
D.
, 1977, “
Effect of Low-Temperatures on Polymorphic Structures of Cotton Cellulose
,”
J. Appl. Polym. Sci.
0021-8995,
21
, pp.
1981
1988
.
15.
Tokoh
,
C.
,
Takabe
,
K.
,
Fujita
,
M.
, and
Saiki
,
H.
, 1998, “
Cellulose Synthesized by Acetobacter Xylinum in the Presence of Acetyl Glucomannan
,”
Cellulose
,
5
, pp.
249
261
.
16.
Segal
,
L.
,
Creely
,
J. J.
,
Martin
,
A. E.
, and
Conrad
,
C. M.
, 1959, “
An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer
,”
Text. Res. J.
0040-5175,
29
, pp.
786
794
.
17.
Mantanis
,
G. I.
,
Young
,
R. A.
, and
Rowell
,
R. M.
, 1995, “
Swelling of Compressed Cellulose Fiber Webs in Organic Liquids
,”
Cellulose
,
2
, pp.
1
22
.
18.
Yano
,
S.
,
Maeda
,
H.
,
Nakajima
,
M.
,
Hagiwara
,
T.
, and
Sawaguchi
,
T.
, 2008, “
Preparation and Mechanical Properties of Bacterial Cellulose Nanocomposites Loaded With Silica Nanoparticles
,”
Cellulose
,
15
, pp.
111
120
.
19.
Hsieh
,
Y. -C.
,
Yano
,
H.
,
Nogi
,
M.
, and
Eichhorn
,
S. J.
, 2008, “
An Estimation of the Young’s Modulus of Bacterial Cellulose Filaments
,”
Cellulose
,
15
, pp.
507
513
.
20.
Keshk
,
S.
, 2006, “
Physical Properties of Bacterial Cellulose Sheets Produced in Presence of Lignosulfonate
,”
Enzyme Microb. Technol.
0141-0229,
40
, pp.
9
12
.
21.
George
,
J.
,
Ramana
,
K. V.
,
Sabapathy
,
S. N.
,
Jagannath
,
J. H.
, and
Bawa
,
A. S.
, 2005, “
Characterization of Chemically Treated Bacterial (Acetobacter xylinum) Biopolymer: Some Thermo-Mechanical Properties
,”
Int. J. Biol. Macromol.
0141-8130,
37
, pp.
189
194
.
22.
Watanabe
,
K.
,
Tabuchi
,
M.
,
Morinaga
,
Y.
, and
Yoshinaga
,
F.
, 1998, “
Structural Features and Properties of Bacterial Cellulose Produced in Agitated Culture
,”
Cellulose
,
5
, pp.
187
200
.
You do not currently have access to this content.