Abstract

In this research, we proposed fabrication process of optical fiber sensors using femtosecond laser and their applications. A beam of femtosecond laser was focused by an objective lens in the optical fiber. By testing different conditions, a group of machining parameters was found that achieve a minimum machining resolution of 3.2 μm. To ablate the core of the optical fiber, which is buried deep inside the cladding, precisely, part of the cladding was removed to expose the core as close as possible to the air. By making a complex pattern to modify the optical path of the laser inside an optical fiber, a sensitivity of 942.8–1015.6 nm per refractive index unit (nm/RIU) was obtained for liquid refractive index sensing. For another sensor, a sensitivity of 1.38 × 105 nm/RIU was obtained, which is high enough to detect small amount of refractive index change of air. It is known to be the first time that we fabricated a complex microstructure in an optical fiber to modify the propagation of the light using femtosecond laser. This research shows the possibility of a complex modification of light in an optical fiber using laser machining.

References

1.
Paixão
,
T.
,
Araújo
,
F.
, and
Antunes
,
P.
,
2019
, “
Highly Sensitive Fiber Optic Temperature and Strain Sensor Based on an Intrinsic Fabry–Perot Interferometer Fabricated by a Femtosecond Laser
,”
Opt. Lett.
,
44
(
19
), pp.
4833
4836
.10.1364/OL.44.004833
2.
Zhang
,
Y.
,
Liao
,
C.
,
Lin
,
C.
,
Shao
,
Y.
,
Wang
,
Y.
, and
Wang
,
Y.
,
2019
, “
Surface Plasmon Resonance Refractive Index Sensor Based on Fiber-Interface Waveguide Inscribed by Femtosecond Laser
,”
Opt. Lett.
,
44
(
10
), pp.
2434
2437
.10.1364/OL.44.002434
3.
Huang
,
B.
, and
Shu
,
X.
,
2018
, “
Highly Sensitive Torsion Sensor With Femtosecond Laser-Induced Low Birefringence Single-Mode Fiber Based Sagnac Interferometer
,”
Opt. Exp.
,
26
(
4
), pp.
4563
4571
.10.1364/OE.26.004563
4.
Hadden
,
J. P.
,
Bharadwaj
,
V.
,
Sotillo
,
B.
,
Rampini
,
S.
,
Osellame
,
R.
,
Witmer
,
J. D.
,
Jayakumar
,
H.
,
Fernandez
,
T. T.
,
Chiappini
,
A.
,
Armellini
,
C.
,
Ferrari
,
M.
,
Ramponi
,
R.
,
Barclay
,
P. E.
, and
Eaton
,
S. M.
,
2018
, “
Integrated Waveguides and Deterministically Positioned Nitrogen Vacancy Centers in Diamond Created by Femtosecond Laser Writing
,”
Opt. Lett.
,
43
(
15
), pp.
3586
3589
.10.1364/OL.43.003586
5.
Li
,
L.
,
Nie
,
W.
,
Li
,
Z.
,
Zhang
,
B.
,
Wang
,
L.
,
Haro-González
,
P.
,
Jaque
,
D.
,
de Aldana
,
J. R. V.
, and
Chen
,
F.
,
2019
, “
Femtosecond Laser Writing of Optical Waveguides by Self-Induced Multiple Refocusing in LiTaO3 Crystal
,”
J. Lightwave Technol.
,
37
(
14
), pp.
3452
3458
.10.1109/JLT.2019.2917076
6.
Douglass
,
G.
,
Dreisow
,
F.
,
Gross
,
S.
, and
Withford
,
M. J.
,
2018
, “
Femtosecond Laser Written Arrayed Waveguide Gratings With Integrated Photonic Lanterns
,”
Opt. Exp.
,
26
(
2
), pp.
1497
1505
.10.1364/OE.26.001497
7.
Huang
,
Y.
,
Zhao
,
Q.
,
Kamyab
,
L.
,
Rostami
,
A.
,
Capolino
,
F.
, and
Boyraz
,
O.
,
2015
, “
Sub-Micron Silicon Nitride Waveguide Fabrication Using Conventional Optical Lithography
,”
Opt. Exp.
,
23
(
5
), pp.
6780
6786
.10.1364/OE.23.006780
8.
Khan
,
M. U.
,
Justice
,
J.
,
Petäjä
,
J.
,
Korhonen
,
T.
,
Boersma
,
A.
,
Wiegersma
,
S.
,
Karppinen
,
M.
, and
Corbett
,
B.
,
2015
, “
Multi-Level Single Mode 2D Polymer Waveguide Optical Interconnects Using Nano-Imprint Lithography
,”
Opt. Exp.
,
23
(
11
), pp.
14630
14639
.10.1364/OE.23.014630
9.
Leibovici
,
M. C. R.
, and
Gaylord
,
T. K.
,
2015
, “
Photonic-Crystal Waveguide Structure by Pattern-Integrated Interference Lithography
,”
Opt. Lett.
,
40
(
12
), pp.
2806
2809
.10.1364/OL.40.002806
10.
Stone
,
A.
,
Jain
,
H.
,
Dierolf
,
V.
,
Sakakura
,
M.
,
Shimotsuma
,
Y.
,
Miura
,
K.
,
Hirao
,
K.
,
Lapointe
,
J.
, and
Kashyap
,
R.
,
2015
, “
Direct Laser-Writing of Ferroelectric Single-Crystal Waveguide Architectures in Glass for 3D Integrated Optics
,”
Sci. Rep.
,
5
(
1
), p.
10391
.10.1038/srep10391
11.
Courvoisier
,
A.
,
Booth
,
M. J.
, and
Salter
,
P. S.
,
2016
, “
Inscription of 3D Waveguides in Diamond Using an Ultrafast Laser
,”
Appl. Phys. Lett.
,
109
(
3
), p.
031109
.10.1063/1.4959267
12.
Castillo
,
G. R.
,
Labrador-Paez
,
L.
,
Chen
,
F.
,
Camacho-Lopez
,
S.
, and
de Aldana
,
J. R. V.
,
2017
, “
Depressed-Cladding 3-D Waveguide Arrays Fabricated With Femtosecond Laser Pulses
,”
J. Lightwave Technol.
,
35
(
13
), pp.
2520
2525
.10.1109/JLT.2017.2696163
13.
Koehler
,
J. R.
,
Köttig
,
F.
,
Trabold
,
B. M.
,
Tani
,
F.
, and
Russell
,
P. S. J.
,
2018
, “
Long-Lived Refractive-Index Changes Induced by Femtosecond Ionization in Gas-Filled Single-Ring Photonic-Crystal Fibers
,”
Phys. Rev. Appl.
,
10
(
6
), p.
064020
.10.1103/PhysRevApplied.10.064020
14.
Cao
,
J.
,
Poumellec
,
B.
,
Brisset
,
F.
, and
Lancry
,
M.
,
2018
, “
Pulse Energy Dependence of Refractive Index Change in Lithium Niobium Silicate Glass During Femtosecond Laser Direct Writing
,”
Opt. Exp.
,
26
(
6
), pp.
7460
7474
.10.1364/OE.26.007460
15.
Gandara-Montano
,
G. A.
,
Zheleznyak
,
L.
, and
Knox
,
W. H.
,
2018
, “
Optical Quality of Hydrogel Ophthalmic Devices Created With Femtosecond Laser Induced Refractive Index Modification
,”
Opt. Mater. Exp.
,
8
(
2
), pp.
295
313
.10.1364/OME.8.000295
16.
Cao
,
J.
,
Mazerolles
,
L.
,
Lancry
,
M.
,
Solas
,
D.
,
Brisset
,
F.
, and
Poumellec
,
B.
,
2016
, “
Form Birefringence Induced in Multicomponent Glass by Femtosecond Laser Direct Writing
,”
Opt. Lett.
,
41
(
12
), pp.
2739
2742
.10.1364/OL.41.002739
17.
McMillen
,
B.
,
Athanasiou
,
C.
, and
Bellouard
,
Y.
,
2016
, “
Femtosecond Laser Direct-Write Waveplates Based on Stress-Induced Birefringence
,”
Opt. Exp.
,
24
(
24
), pp.
27239
27252
.10.1364/OE.24.027239
18.
Yuan
,
L.
,
Cheng
,
B.
,
Huang
,
J.
,
Liu
,
J.
,
Wang
,
H.
,
Lan
,
X.
, and
Xiao
,
H.
,
2016
, “
Stress-Induced Birefringence and Fabrication of in-Fiber Polarization Devices by Controlled Femtosecond Laser Irradiations
,”
Opt. Exp.
,
24
(
2
), pp.
1062
1071
.10.1364/OE.24.001062
19.
Chen
,
C.
,
Akhmadaliev
,
S.
,
Romero
,
C.
,
de Aldana
,
J. R. V.
,
Zhou
,
S.
, and
Chen
,
F.
,
2017
, “
Ridge Waveguides and Y-Branch Beam Splitters in KTiOAsO4 Crystal by 15 MeV Oxygen Ion Implantation and Femtosecond Laser Ablation
,”
J. Lightwave Technol.
,
35
(
2
), pp.
225
229
.10.1109/JLT.2016.2636998
20.
Erps
,
J. V.
,
Ciuk
,
T.
,
Pasternak
,
I.
,
Krajewska
,
A.
,
Strupinski
,
W.
,
Put
,
S. V.
,
Steenberge
,
G. V.
,
Baert
,
K.
,
Terryn
,
H.
,
Thienpont
,
H.
, and
Vermeulen
,
N.
,
2015
, “
Laser Ablation- and Plasma Etching-Based Patterning of Graphene on Silicon-on-Insulator Waveguides
,”
Opt. Exp.
,
23
(
20
), pp.
26639
26650
.10.1364/OE.23.026639
21.
Yao
,
Y.
,
Wang
,
W.
, and
Zhang
,
B.
,
2018
, “
Designing MMI Structured Beam-Splitter in LiNbO3 Crystal Based on a Combination of Ion Implantation and Femtosecond Laser Ablation
,”
Opt. Exp.
,
26
(
15
), pp.
19648
19656
.10.1364/OE.26.019648
22.
Su
,
H.
, and
Zhou
,
F.
,
2018
, “
Optimization of Micro-Optical Fiber-Based Mach–Zehnder Interferometer RI Sensor
,”
J. Lightwave Technol.
,
36
(
18
), pp.
4039
4045
.10.1109/JLT.2018.2859273
23.
Ahsani
,
V.
,
Ahmed
,
F.
,
Jun
,
M. B. G.
, and
Bradley
,
C.
,
2019
, “
Tapered Fiber-Optic Mach-Zehnder Interferometer for Ultra-High Sensitivity Measurement of Refractive Index
,”
Sensors
,
19
(
7
), p.
1652
.10.3390/s19071652
24.
Chen
,
P.
,
Shu
,
X.
,
Cao
,
H.
, and
Sugden
,
K.
,
2017
, “
Ultra-Sensitive Refractive Index Sensor Based on an Extremely Simple Femtosecond-Laser-Induced Structure
,”
Opt. Lett.
,
42
(
6
), pp.
1157
1160
.10.1364/OL.42.001157
25.
Zhang
,
Y.
,
Lin
,
C.
,
Liao
,
C.
,
Yang
,
K.
,
Li
,
Z.
, and
Wang
,
Y.
,
2018
, “
Femtosecond Laser-Inscribed Fiber Interface Mach–Zehnder Interferometer for Temperature-Insensitive Refractive Index Measurement
,”
Opt. Lett.
,
43
(
18
), pp.
4421
4424
.10.1364/OL.43.004421
26.
Li
,
W. W.
,
Chen
,
W. P.
,
Wang
,
D. N.
,
Wang
,
Z. K.
, and
Xu
,
B.
,
2017
, “
Fiber Inline Mach–Zehnder Interferometer Based on Femtosecond Laser Inscribed Waveguides
,”
Opt. Lett.
,
42
(
21
), pp.
4438
4441
.10.1364/OL.42.004438
27.
Liu
,
J.
, and
Wang
,
D. N.
,
2018
, “
In-Fiber Beam Splitters for Construction of in-Line Michelson Interferometers
,”
Opt. Lett.
,
43
(
17
), pp.
4304
4307
.10.1364/OL.43.004304
28.
Dong
,
X.-R.
,
Sun
,
X.-Y.
,
Chu
,
D.-K.
,
Yin
,
K.
,
Luo
,
Z.
,
Zhou
,
C.
,
Wang
,
C.
,
Hu
,
Y.-W.
, and
Duan
,
J.-A.
,
2016
, “
Microcavity Mach–Zehnder Interferometer Sensors for Refractive Index Sensing
,”
IEEE Photonics Technol. Lett.
,
28
(
20
), pp.
2285
2288
.10.1109/LPT.2016.2591983
29.
Zhao
,
Y.
,
Zhao
,
H.
,
Lv
,
R.
, and
Zhao
,
J.
,
2019
, “
Review of Optical Fiber Mach–Zehnder Interferometers With Micro-Cavity Fabricated by Femtosecond Laser and Sensing Applications
,”
Opt. Lasers Eng.
,
117
, pp.
7
20
.10.1016/j.optlaseng.2018.12.013
30.
Zhou
,
F.
,
Su
,
H.
,
Joe
,
H.-E.
, and
Jun
,
M. B.-G.
,
2020
, “
Temperature Insensitive Fiber Optical Refractive Index Probe With Large Dynamic Range at 1,550 nm
,”
Sens. Actuators A
,
312
, p.
112102
.10.1016/j.sna.2020.112102
31.
Ciddor
,
P. E.
,
1996
, “
Refractive Index of Air: New Equations for the Visible and Near Infrared
,”
Appl. Opt.
,
35
(
9
), pp.
1566
1573
.10.1364/AO.35.001566
32.
Ben-Yakar
,
A.
, and
Byer
,
R. L.
,
2004
, “
Femtosecond Laser Ablation Properties of Borosilicate Glass
,”
J. Appl. Phys.
,
96
(
9
), pp.
5316
5323
.10.1063/1.1787145
33.
Nieto
,
D.
,
Arines
,
J.
,
O'Connor
,
G. M.
, and
Flores-Arias
,
M. T.
,
2015
, “
Single-Pulse Laser Ablation Threshold of Borosilicate, Fused Silica, Sapphire, and Soda-Lime Glass for Pulse Widths of 500 fs, 10 ps, 20 ns
,”
Appl. Opt.
,
54
(
29
), pp.
8596
8601
.10.1364/AO.54.008596
34.
Al-Qazwini
,
Y.
,
Noor
,
A.
,
Al-Qazwini
,
Z.
,
Yaacob
,
M. H.
,
Harun
,
S. W.
, and
Mahdi
,
M.
,
2016
, “
Refractive Index Sensor Based on SPR in Symmetrically Etched Plastic Optical Fibers
,”
Sens. Actuators A
,
246
, pp.
163
169
.10.1016/j.sna.2016.04.064
35.
An
,
G.
,
Hao
,
X.
,
Li
,
S.
,
Yan
,
X.
, and
Zhang
,
X.
,
2017
, “
D-Shaped Photonic Crystal Fiber Refractive Index Sensor Based on Surface Plasmon Resonance
,”
Appl. Opt.
,
56
(
24
), pp.
6988
6992
.10.1364/AO.56.006988
36.
An
,
G.
,
Li
,
S.
,
Yan
,
X.
,
Zhang
,
X.
,
Yuan
,
Z.
,
Wang
,
H.
,
Zhang
,
Y.
,
Hao
,
X.
,
Shao
,
Y.
, and
Han
,
Z.
,
2017
, “
Extra-Broad Photonic Crystal Fiber Refractive Index Sensor Based on Surface Plasmon Resonance
,”
Plasmonics
,
12
(
2
), pp.
465
471
.10.1007/s11468-016-0286-2
37.
An
,
G.
,
Li
,
S.
,
Wang
,
H.
,
Zhang
,
X.
, and
Yan
,
X.
,
2018
, “
Quasi-D-Shaped Optical Fiber Plasmonic Refractive Index Sensor
,”
J. Opt.
,
20
(
3
), p.
035403
.10.1088/2040-8986/aaaa42
38.
An
,
G.
,
Li
,
S.
,
Cheng
,
T.
,
Yan
,
X.
,
Zhang
,
X.
,
Zhou
,
X.
, and
Yuan
,
Z.
,
2019
, “
Ultra-Stable D-Shaped Optical Fiber Refractive Index Sensor With Graphene-Gold Deposited Platform
,”
Plasmonics
,
14
(
1
), pp.
155
163
.10.1007/s11468-018-0788-1
39.
André
,
R. M.
,
Warren-Smith
,
S. C.
,
Becker
,
M.
,
Dellith
,
J.
,
Rothhardt
,
M.
,
Zibaii
,
M.
,
Latifi
,
H.
,
Marques
,
M. B.
,
Bartelt
,
H.
, and
Frazão
,
O.
,
2016
, “
Simultaneous Measurement of Temperature and Refractive Index Using Focused Ion Beam Milled Fabry-Perot Cavities in Optical Fiber Micro-Tips
,”
Opt. Express
,
24
(
13
), pp.
14053
14065
.10.1364/OE.24.014053
40.
Bag
,
S. K.
,
Wan
,
M.
,
Sinha
,
R. K.
, and
Varshney
,
S. K.
,
2020
, “
Design and Characterization of Surface Relief Grating on Etched Multimode Optical Fiber for Refractive Index Sensing
,”
Sens. Actuators A
,
303
, p.
111836
.10.1016/j.sna.2020.111836
41.
Baharin
,
N. F.
,
Azmi
,
A. I.
,
Abdullah
,
A. S.
, and
Noor
,
M. Y. M.
,
2018
, “
Refractive Index Sensor Based on Lateral-Offset of Coreless Silica Interferometer
,”
Opt. Laser Technol.
,
99
, pp.
396
401
.10.1016/j.optlastec.2017.09.028
42.
Bhardwaj
,
V.
, and
Singh
,
V. K.
,
2016
, “
Fabrication and Characterization of Cascaded Tapered Mach-Zehnder Interferometer for Refractive Index Sensing
,”
Sens. Actuators A
,
244
, pp.
30
34
.10.1016/j.sna.2016.04.008
43.
Bhardwaj
,
V.
,
Kishor
,
K.
, and
Singh
,
V. K.
,
2017
, “
Experimental and Theoretical Analysis of Connector Offset Optical Fiber Refractive Index Sensor
,”
Plasmonics
,
12
(
6
), pp.
1999
2004
.10.1007/s11468-016-0473-1
44.
Chen
,
C.
,
Yang
,
R.
,
Zhang
,
X.
,
Wei
,
W.
,
Guo
,
Q.
,
Zhang
,
X.
,
Qin
,
L.
,
Ning
,
Y.
, and
Yu
,
Y.
,
2018
, “
Compact Refractive Index Sensor Based on an S-Tapered Fiber Probe
,”
Opt. Mater. Exp.
,
8
(
4
), pp.
919
925
.10.1364/OME.8.000919
45.
Chen
,
F.
,
Jiang
,
Y.
,
Zhang
,
L.
,
Jiang
,
L.
, and
Wang
,
S.
,
2018
, “
Fiber Optic Refractive Index and Magnetic Field Sensors Based on Microhole-Induced Inline Mach–Zehnder Interferometers
,”
Meas. Sci. Technol.
,
29
(
4
), p.
045103
.10.1088/1361-6501/aa902c
46.
Dai
,
B.
,
Shen
,
X.
,
Hu
,
X.
,
Yang
,
L.
,
Li
,
H.
,
Peng
,
J.
, and
Li
,
J.
,
2019
, “
Temperature-Insensitive Refractive Index Sensor With Etched Microstructure Fiber
,”
Sensors
,
19
(
17
), p.
3749
.10.3390/s19173749
47.
Ding
,
Z.-W.
,
Lang
,
T.-T.
,
Wang
,
Y.
, and
Zhao
,
C.-L.
,
2017
, “
Surface Plasmon Resonance Refractive Index Sensor Based on Tapered Coreless Optical Fiber Structure
,”
J. Lightwave Technol.
,
35
(
21
), pp.
4734
4739
.10.1109/JLT.2017.2755668
48.
Dong
,
X.
,
Du
,
H.
,
Luo
,
Z.
,
Yin
,
K.
, and
Duan
,
J.
,
2018
, “
Highly Sensitive Refractive Index Sensor Based on Novel Mach–Zehnder Interferometer With Multimode Fiber–Thin Core Fiber–Multimode Fiber Structure
,”
Jpn. J. Appl. Phys.
,
57
(
9
), p.
092501
.10.7567/JJAP.57.092501
49.
Du
,
C.
,
Wang
,
Q.
,
Hu
,
H.
, and
Zhao
,
Y.
,
2017
, “
Highly Sensitive Refractive Index Sensor Based on Four-Hole Grapefruit Microstructured Fiber With Surface Plasmon Resonance
,”
Plasmonics
,
12
(
6
), pp.
1961
1965
.10.1007/s11468-016-0468-y
50.
Du
,
H.
,
Sun
,
X.
,
Hu
,
Y.
,
Dong
,
X.
, and
Zhou
,
J.
,
2019
, “
High Sensitive Refractive Index Sensor Based on Cladding Etched Photonic Crystal Fiber Mach-Zehnder Interferometer
,”
Photonic Sens.
,
9
(
2
), pp.
126
134
.10.1007/s13320-019-0532-2
51.
Fang
,
G.
,
Jia
,
P.
,
Liang
,
T.
,
Tan
,
Q.
,
Hong
,
Y.
,
Liu
,
W.
, and
Xiong
,
J.
,
2016
, “
Diaphragm-Free Fiber-Optic Fabry–Perot Interferometer Based on Tapered Hollow Silica Tube
,”
Opt. Commun.
,
371
, pp.
201
205
.10.1016/j.optcom.2016.03.026
52.
Fu
,
X.
,
Zhang
,
J.
,
Wang
,
S.
,
Fu
,
G.
,
Liu
,
Q.
,
Jin
,
W.
, and
Bi
,
W.
,
2016
, “
A Refractive Index Sensor Based on Taper Michelson Interferometer in Multimode Fiber
,”
Proc. SPIE,
10025
, p.
100251K
.
53.
Gangwar
,
R. K.
, and
Singh
,
V. K.
,
2017
, “
Highly Sensitive Surface Plasmon Resonance Based D-Shaped Photonic Crystal Fiber Refractive Index Sensor
,”
Plasmonics
,
12
(
5
), pp.
1367
1372
.10.1007/s11468-016-0395-y
54.
Gao
,
R.
,
Lu
,
D.
,
Cheng
,
J.
, and
Qi
,
Z.
,
2017
, “
Fiber Optic Refractive Index Sensor Using Optofluidic Anti-Resonant Reflecting Guidance
,”
Proc. SPIE,
10464
, p.
104640N
.
55.
Geng
,
T.
,
Zhang
,
S.
,
Peng
,
F.
,
Yang
,
W.
,
Sun
,
C.
,
Chen
,
X.
,
Zhou
,
Y.
,
Hu
,
Q.
, and
Yuan
,
L.
,
2017
, “
A Temperature-Insensitive Refractive Index Sensor Based on No-Core Fiber Embedded Long Period Grating
,”
J. Lightwave Technol.
,
35
(
24
), pp.
5391
5396
.10.1109/JLT.2017.2772304
56.
Gomes
,
A. D.
, and
Frazão
,
O.
,
2016
, “
Mach–Zehnder Based on Large Knot Fiber Resonator for Refractive Index Measurement
,”
IEEE Photonics Technol. Lett.
,
28
(
12
), pp.
1279
1281
.10.1109/LPT.2016.2538963
57.
Gong
,
Z.
,
Chen
,
K.
,
Zhou
,
X.
, and
Yu
,
Q.
,
2017
, “
Temperature-Compensated Refractive Index Sensor Based on Bent-Fiber Interference
,”
Opt. Fiber Technol.
,
36
, pp.
6
9
.10.1016/j.yofte.2017.01.011
58.
Hasan
,
M. R.
,
Akter
,
S.
,
Ahmed
,
K.
, and
Abbott
,
D.
,
2018
, “
Plasmonic Refractive Index Sensor Employing Niobium Nanofilm on Photonic Crystal Fiber
,”
IEEE Photonics Technol. Lett.
,
30
(
4
), pp.
315
318
.10.1109/LPT.2017.2786475
59.
Hu
,
H.
,
Song
,
X.
,
Han
,
Q.
,
Chang
,
P.
,
Zhang
,
J.
,
Liu
,
K.
,
Du
,
Y.
,
Wang
,
H.
, and
Liu
,
T.
,
2020
, “
High Sensitivity Fiber Optic SPR Refractive Index Sensor Based on Multimode-No-Core-Multimode Structure
,”
IEEE Sens. J.
,
20
(
6
), pp.
2967
2975
.10.1109/JSEN.2019.2956559
60.
Hu
,
J.
,
Shao
,
L.
,
Gu
,
G.
,
Zhang
,
X.
,
Liu
,
Y.
,
Song
,
X.
,
Song
,
Z.
,
Feng
,
J.
,
Buczyński
,
R.
, and
Śmietana
,
M.
,
2019
, “
Dual Mach–Zehnder Interferometer Based on Side-Hole Fiber for High-Sensitivity Refractive Index Sensing
,”
IEEE Photonics J.
,
11
(
6
), pp.
1
13
.10.1109/JPHOT.2019.2948087
61.
Jia
,
P.
,
Fang
,
G.
,
Liang
,
T.
,
Hong
,
Y.
,
Tan
,
Q.
,
Chen
,
X.
,
Liu
,
W.
,
Xue
,
C.
,
Liu
,
J.
,
Zhang
,
W.
, and
Xiong
,
J.
,
2017
, “
Temperature-Compensated Fiber-Optic Fabry–Perot Interferometric Gas Refractive-Index Sensor Based on Hollow Silica Tube for High-Temperature Application
,”
Sens. Actuators B
,
244
, pp.
226
232
.10.1016/j.snb.2016.12.123
62.
Jiang
,
J.
,
Zhao
,
Y.
,
Yang
,
Y.
,
Wang
,
Y.
,
He
,
X.
,
Yang
,
W.
, and
Li
,
L.
,
2019
, “
All-Fiber Fabry–Perot Interferometer for Liquid Refractive Index Measurement
,”
J. Russ. Laser Res.
,
40
(
4
), pp.
370
374
.10.1007/s10946-019-09813-4
63.
Li
,
C.
,
Ning
,
T.
,
Zhang
,
C.
,
Li
,
J.
,
Zhang
,
C.
,
Wen
,
X.
,
Lin
,
H.
, and
Pei
,
L.
,
2016
, “
All-Fiber Multipath Mach–Zehnder Interferometer Based on a Four-Core Fiber for Sensing Applications
,”
Sens. Actuators A
,
248
, pp.
148
154
.10.1016/j.sna.2016.07.031
64.
Li
,
D.
,
Zhang
,
W.
,
Liu
,
H.
,
Hu
,
J.
, and
Zhou
,
G.
,
2017
, “
High Sensitivity Refractive Index Sensor Based on Multicoating Photonic Crystal Fiber With Surface Plasmon Resonance at Near-Infrared Wavelength
,”
IEEE Photonics J.
,
9
(
2
), pp.
1
8
.10.1109/JPHOT.2017.2687121
65.
Li
,
J.
,
Zhang
,
M.
,
Wan
,
M.
,
Lin
,
C.
,
Huang
,
S.
,
Liu
,
C.
,
He
,
Q.
,
Qiu
,
X.
, and
Fang
,
X.
,
2020
, “
Ultrasensitive Refractive Index Sensor Based on Enhanced Vernier Effect Through Cascaded Fiber Core-Offset Pairs
,”
Opt. Exp.
,
28
(
3
), pp.
4145
4155
.10.1364/OE.384815
66.
Li
,
L.
,
Ma
,
Q.
,
Cao
,
M.
,
Zhang
,
G.
,
Zhang
,
Y.
,
Jiang
,
L.
,
Gao
,
C.
,
Yao
,
J.
,
Gong
,
S.
, and
Li
,
W.
,
2016
, “
High Stability Michelson Refractometer Based on an In-Fiber Interferometer Followed With a Faraday Rotator Mirror
,”
Sens. Actuators B
,
234
, pp.
674
679
.10.1016/j.snb.2016.05.045
67.
Li
,
T.
,
Zhu
,
L.
,
Yang
,
X.
,
Lou
,
X.
, and
Yu
,
L.
,
2020
, “
A Refractive Index Sensor Based on H-Shaped Photonic Crystal Fibers Coated With Ag-Graphene Layers
,”
Sensors
,
20
(
3
), p.
741
.10.3390/s20030741
68.
Liao
,
C.
,
Wang
,
Q.
,
Xu
,
L.
,
Liu
,
S.
,
He
,
J.
,
Zhao
,
J.
,
Li
,
Z.
, and
Wang
,
Y.
,
2016
, “
D-Shaped Fiber Grating Refractive Index Sensor Induced by an Ultrashort Pulse Laser
,”
Appl. Opt.
,
55
(
7
), pp.
1525
1529
.10.1364/AO.55.001525
69.
Liao
,
Y.-C.
,
Mao
,
Z.-Q.
,
Liu
,
B.
,
Chen
,
L.
,
Liu
,
J.
,
Wan
,
S.-P.
,
X.-D
,
H.
, and
Wu
,
Q.
,
2019
, “
Ultrasensitive Microfiber Refractive Index Sensor Based on Mach-Zehnder Interference of Core Offset Structure
,” 18th International Conference on Optical Communications and Networks (
ICOCN
), Huangshan, China, Aug. 5–8, pp.
1
3
.10.1109/ICOCN.2019.8934774
70.
Ling
,
Q.
,
Gu
,
Z.
, and
Gao
,
K.
,
2018
, “
Smart Design of a Long-Period Fiber Grating Refractive Index Sensor Based on Dual-Peak Resonance Near the Phase-Matching Turning Point
,”
Appl. Opt.
,
57
(
10
), pp.
2693
2697
.10.1364/AO.57.002693
71.
Liu
,
P.
,
Jiang
,
L.
,
Wang
,
S.
,
Cao
,
Z.
, and
Wang
,
P.
,
2016
, “
Temperature-Insensitive Refractive Index Sensor Based on an Optical Fiber Extrinsic Fabry–Perot Interferometer Processed by a Femtosecond Laser
,”
Chin. Opt. Lett.
,
14
(
2
), p.
020602
.http://col.osa.org/abstract.cfm?URI=col-14-2-020602
72.
Liu
,
X.
,
Zhang
,
X.
,
Liu
,
Y.
,
Liu
,
Z.
, and
Peng
,
W.
,
2016
, “
Multi-Point Fiber-Optic Refractive Index Sensor by Using Coreless Fibers
,”
Opt. Commun.
,
365
, pp.
168
172
.10.1016/j.optcom.2015.10.071
73.
Liu
,
Y.
,
Jing
,
Z.
,
Li
,
A.
,
Liu
,
Q.
,
Song
,
P.
,
Li
,
R.
, and
Peng
,
W.
,
2019
, “
An Open-Cavity Fiber Fabry-Perot Interferometer Fabricated by Femtosecond Laser Micromachining for Refractive Index Sensing
,”
Proc. SPIE,
11209
, p.
1120902
.
74.
Liu
,
Z.
,
Liu
,
L.
,
Zhu
,
Z.
,
Zhang
,
Y.
,
Wei
,
Y.
,
Zhang
,
Y.
,
Yang
,
J.
, and
Yuan
,
L.
,
2017
, “
Dual-Channel Surface Plasmon Resonance Refractive Index Sensor Based on Modified Hetero-Core Structure Fiber
,”
Opt. Commun.
,
403
, pp.
290
295
.10.1016/j.optcom.2017.07.064
75.
Lu
,
H.
,
Yue
,
Y.
,
Du
,
J.
,
Shao
,
L.
,
Wu
,
T.
,
Pan
,
J.
, and
Hu
,
J.
,
2018
, “
Temperature and Liquid Refractive Index Sensor Using PD Fiber Structure-Based Sagnac Loop
,”
Opt. Exp.
,
26
(
15
), pp.
18920
18927
.10.1364/OE.26.018920
76.
Lu
,
J.
,
Li
,
Y.
,
Han
,
Y.
,
Liu
,
Y.
, and
Gao
,
J.
,
2018
, “
D-Shaped Photonic Crystal Fiber Plasmonic Refractive Index Sensor Based on Gold Grating
,”
Appl. Opt.
,
57
(
19
), pp.
5268
5272
.10.1364/AO.57.005268
77.
Ma
,
Y.
,
Guo
,
D.
,
Gao
,
Y.
,
Sarah
,
S.
,
Wu
,
Q.
,
Zhou
,
J.
,
Pištora
,
J.
, and
Cada
,
M.
,
2018
, “
High Sensitive Z-Shaped Fiber Interferometric Refractive Index Sensor: Simulation and Experiment
,”
IEEE Photonics Technol. Lett.
,
30
(
12
), pp.
1131
1134
.10.1109/LPT.2018.2828199
78.
Mollah
,
M. A.
,
Razzak
,
S. A.
,
Paul
,
A. K.
, and
Hasan
,
M. R.
,
2019
, “
Microstructure Optical Fiber Based Plasmonic Refractive Index Sensor
,”
Sensing Bio-Sensing Res.
,
24
, p.
100286
.10.1016/j.sbsr.2019.100286
79.
Moreno
,
Y.
,
Song
,
Q.
,
Xing
,
Z.
,
Lu
,
T.
,
Qin
,
H.
,
Sun
,
Y.
,
Zhou
,
W.
,
Zhang
,
W.
,
Yan
,
Z.
, and
Sun
,
Q.
,
2019
, “
Hybrid Polarizing Grating and TFBG Based SPR Refractive Index Sensor
,” 18th International Conference on Optical Communications and Networks (
ICOCN
), Huangshan, China, Aug. 5–8, pp.
1
3
.10.1109/ICOCN.2019.8934375
80.
Nasirifar
,
R.
,
Danaie
,
M.
, and
Dideban
,
A.
,
2019
, “
Dual Channel Optical Fiber Refractive Index Sensor Based on Surface Plasmon Resonance
,”
Optik
,
186
, pp.
194
204
.10.1016/j.ijleo.2019.04.104
81.
Ni
,
X.
,
Fu
,
S.
, and
Zhao
,
Z.
,
2016
, “
Thin-Fiber-Based Fabry–Pérot Cavity for Monitoring Microfluidic Refractive Index
,”
IEEE Photonics J.
,
8
(
3
), pp.
1
7
.10.1109/JPHOT.2016.2566448
82.
Ouyang
,
Y.
,
Xu
,
X.
,
Zhao
,
Y.
,
Zhou
,
A.
, and
Yuan
,
L.
,
2018
, “
Temperature Compensated Refractometer Based on Parallel Fiber Fabry–Pérot Interferometers
,”
IEEE Photonics Technol. Lett.
,
30
(
13
), pp.
1262
1265
.10.1109/LPT.2018.2844543
83.
Pathak
,
A. K.
,
Rahman
,
B. A.
,
Singh
,
V. K.
, and
Kumari
,
S.
,
2019
, “
Sensitivity Enhancement of a Concave Shaped Optical Fiber Refractive Index Sensor Covered With Multiple Au Nanowires
,”
Sensors
,
19
(
19
), p.
4210
.10.3390/s19194210
84.
Peng
,
J.
,
Lyu
,
D.
,
Huang
,
Q.
,
Qu
,
Y.
,
Wang
,
W.
,
Sun
,
T.
, and
Yang
,
M.
,
2019
, “
Dielectric Film Based Optical Fiber Sensor Using Fabry–Perot Resonant Structure
,”
Opt. Commun.
,
430
, pp.
63
67
.10.1016/j.optcom.2018.08.037
85.
Pu
,
S.
,
Luo
,
L.
,
Tang
,
J.
,
Mao
,
L.
, and
Zeng
,
X.
,
2016
, “
Ultrasensitive Refractive-Index Sensors Based on Tapered Fiber Coupler With Sagnac Loop
,”
IEEE Photonics Technol. Lett.
,
28
(
10
), pp.
1073
1076
.10.1109/LPT.2016.2529181
86.
Qi
,
Y.
,
Zhang
,
S.
,
Feng
,
S.
,
Wang
,
X.
,
Sun
,
W.
,
Ye
,
J.
,
Han
,
P.
, and
Zhang
,
Y.
,
2018
, “
Integrated Mach-Zehnder Interferometer on the End Facet of Multicore Fiber for Refractive Index Sensing Application
,”
Proc. SPIE,
10623
, p.
106230T
.
87.
Rifat
,
A. A.
,
Mahdiraji
,
G. A.
,
Sua
,
Y. M.
,
Ahmed
,
R.
,
Shee
,
Y.
, and
Adikan
,
F. M.
,
2016
, “
Highly Sensitive Multi-Core Flat Fiber Surface Plasmon Resonance Refractive Index Sensor
,”
Opt. Exp.
,
24
(
3
), pp.
2485
2495
.10.1364/OE.24.002485
88.
Santos
,
D.
,
Guerreiro
,
A.
, and
Baptista
,
J. M.
,
2017
, “
SPR Optimization Using Metamaterials in a D-Type PCF Refractive Index Sensor
,”
Opt. Fiber Technol.
,
33
, pp.
83
88
.10.1016/j.yofte.2016.11.010
89.
Sun
,
X.-Y.
,
Chu
,
D.-K.
,
Dong
,
X.-R.
,
Li
,
H.-T.
,
Hu
,
Y.-W.
,
Zhou
,
J.-Y.
, and
Duan
,
J.-A.
,
2016
, “
Highly Sensitive Refractive Index Fiber Inline Mach–Zehnder Interferometer Fabricated by Femtosecond Laser Micromachining and Chemical Etching
,”
Opt. Laser Technol.
,
77
, pp.
11
15
.10.1016/j.optlastec.2015.07.026
90.
Suntsov
,
S.
,
Rüter
,
C. E.
,
Schipkowski
,
T.
, and
Kip
,
D.
,
2017
, “
Fiber-Integrated Refractive Index Sensor Based on a Diced Fabry–Perot Micro-Resonator
,”
Appl. Opt.
,
56
(
33
), pp.
9139
9143
.10.1364/AO.56.009139
91.
Tien
,
C.-L.
,
Lin
,
H.-Y.
, and
Su
,
S.-H.
,
2018
, “
High Sensitivity Refractive Index Sensor by D-Shaped Fibers and Titanium Dioxide Nanofilm
,”
Soft Matter Photonics
,
2018
, pp.
1
6
.10.1155/2018/2303740
92.
Tripathi
,
S. M.
,
Bock
,
W. J.
, and
Mikulic
,
P.
,
2017
, “
A Wide-Range Temperature Immune Refractive-Index Sensor Using Concatenated Long-Period-Fiber-Gratings
,”
Sens. Actuators B
,
243
, pp.
1109
1114
.10.1016/j.snb.2016.12.012
93.
Tsai
,
C.-W.
, and
Yu
,
C.-P.
,
2019
, “
Highly Sensitive Fabry-Pérot Refractive Index Sensor by Using a Polished Pyramidal Fiber
,” International Conference on Photonics in Switching and Computing (
PSC
), Fukuoka, Japan, July 7–11, pp.
1
3
.10.23919/PS.2019.8818149
94.
Velázquez-González
,
J. S.
,
Monzón-Hernández
,
D.
,
Moreno-Hernández
,
D.
,
Martínez-Piñón
,
F.
, and
Hernández-Romano
,
I.
,
2017
, “
Simultaneous Measurement of Refractive Index and Temperature Using a SPR-Based Fiber Optic Sensor
,”
Sens. Actuators B
,
242
, pp.
912
920
.10.1016/j.snb.2016.09.164
95.
Wang
,
B.
,
Ni
,
K.
,
Wang
,
P.
,
Ma
,
Q.
,
Tian
,
W.
, and
Tan
,
L.
,
2018
, “
A CNT-Coated Refractive Index Sensor Based on Michelson Interferometer With Thin-Core Fiber
,”
Opt. Fiber Technol.
,
46
, pp.
302
305
.10.1016/j.yofte.2018.11.018
96.
Wang
,
Q.
,
Kong
,
L.
,
Dang
,
Y.
,
Xia
,
F.
,
Zhang
,
Y.
,
Zhao
,
Y.
,
Hu
,
H.
, and
Li
,
J.
,
2016
, “
High Sensitivity Refractive Index Sensor Based on Splicing Points Tapered SMF-PCF-SMF Structure Mach-Zehnder Mode Interferometer
,”
Sens. Actuators B
,
225
, pp.
213
220
.10.1016/j.snb.2015.11.047
97.
Wang
,
Q.
,
Wei
,
W.
,
Guo
,
M.
, and
Zhao
,
Y.
,
2016
, “
Optimization of Cascaded Fiber Tapered Mach–Zehnder Interferometer and Refractive Index Sensing Technology
,”
Sens. Actuators B
,
222
, pp.
159
165
.10.1016/j.snb.2015.07.098
98.
Wang
,
T.
,
Liu
,
K.
,
Jiang
,
J.
,
Xue
,
M.
,
Chang
,
P.
, and
Liu
,
T.
,
2017
, “
Temperature-Insensitive Refractive Index Sensor Based on Tilted Moiré FBG With High Resolution
,”
Opt. Exp.
,
25
(
13
), pp.
14900
14909
.10.1364/OE.25.014900
99.
Wang
,
Y.
,
Wang
,
S.
,
Jiang
,
L.
,
Huang
,
H.
,
Zhang
,
L.
,
Wang
,
P.
,
Lv
,
L.
, and
Cao
,
Z.
,
2017
, “
Temperature-Insensitive Refractive Index Sensor Based on Mach–Zehnder Interferometer With Two Microcavities
,”
Chin. Opt. Lett.
,
15
(
2
), p.
020603
.10.3788/COL201715.020603
100.
Wei
,
X.
,
Li
,
Z.
,
Hou
,
L.
,
Yang
,
J.
, and
Ran
,
L.
,
2019
, “
Microgroove Based Optical Fiber Refractive Index Sensor
,”
11209
, p.
112094Q
.
101.
Xia
,
F.
,
Zhao
,
Y.
,
Hu
,
H.
,
Chen
,
M.
, and
Zhang
,
Y.
,
2017
, “
Refractive Index Sensor Based on Asymmetrical Mach-Zehnder Interferometer With Step-Like Tapers
,” 25th Optical Fiber Sensors Conference (
OFS
), Jeju, Republic of Korea, pp.
1
4
.10.1117/12.2263255
102.
Xu
,
Z.
,
Luo
,
Y.
,
Sun
,
Q.
,
Shum
,
P. P.
,
Wu
,
Z.
,
Shao
,
X.
, and
Liu
,
D.
,
2017
, “
Refractive Index Sensor Based on θ-Shaped Microfiber Resonator and Vernier Effect
,”
Proc. SPIE
, 10323, p.
103233N
.10.1117/12.2265277
103.
Yang
,
J.
,
Yang
,
M.
,
Guan
,
C. Y.
,
Shi
,
J. H.
,
Zhu
,
Z.
,
Li
,
P.
,
Wang
,
P. F.
,
Yang
,
J.
, and
Yuan
,
L. B.
,
2018
, “
In-Fiber Mach-Zehnder Interferometer With Piecewise Interference Spectrum Based on Hole-Assisted Dual-Core Fiber for Refractive Index Sensing
,”
Opt. Exp.
,
26
(
15
), pp.
19091
19099
.10.1364/OE.26.019091
104.
Yang
,
J.
,
Guan
,
C.
,
Tian
,
P.
,
Yuan
,
T.
,
Zhu
,
Z.
,
Li
,
P.
,
Shi
,
J.
,
Yang
,
J.
, and
Yuan
,
L.
,
2017
, “
In-Fiber Refractive Index Sensor Based on Single Eccentric Hole-Assisted Dual-Core Fiber
,”
Opt. Lett.
,
42
(
21
), pp.
4470
4473
.10.1364/OL.42.004470
105.
Yang
,
Y.
,
Wang
,
Y.
,
Jiang
,
J.
,
Zhao
,
Y.
,
He
,
X.
, and
Li
,
L.
,
2019
, “
High-Sensitive All-Fiber Fabry-Perot Interferometer Gas Refractive Index Sensor Based on Lateral Offset Splicing and Vernier Effect
,”
Optik
,
196
, p.
163181
.10.1016/j.ijleo.2019.163181
106.
Yao
,
T.
,
Pu
,
S.
,
Zhao
,
Y.
, and
Li
,
Y.
,
2019
, “
Ultrasensitive Refractive Index Sensor Based on Parallel-Connected Dual Fabry-Perot Interferometers With Vernier Effect
,”
Sens. Actuators A
,
290
, pp.
14
19
.10.1016/j.sna.2019.03.011
107.
Zhang
,
C.
,
Ning
,
T.
,
Li
,
J.
,
Pei
,
L.
,
Li
,
C.
, and
Lin
,
H.
,
2017
, “
Refractive Index Sensor Based on Tapered Multicore Fiber
,”
Opt. Fiber Technol.
,
33
, pp.
71
76
.10.1016/j.yofte.2016.11.008
108.
Zhang
,
M.
,
Zhu
,
G.
,
Lu
,
L.
,
Lou
,
X.
, and
Zhu
,
L.
,
2019
, “
Refractive Index Sensor Based on Ultrafine Tapered Single-Mode Nocladding Single-Mode Fiber Structure
,”
Opt. Fiber Technol.
,
48
, pp.
297
302
.10.1016/j.yofte.2019.01.008
109.
ZhangYuan
,
S. T.
, and
Yuan
,
L.
,
2017
, “
Asymmetrical Twin-Core Fiber Based Michelson Interferometer for Environmental Refractive Index Sensing
,” 25th Optical Fiber Sensors Conference (
OFS
), Jeju, Republic of Korea, pp.
1
4
.10.1117/12.2264956
110.
Zhang
,
W.
,
Lian
,
Z.
,
Benson
,
T.
,
Wang
,
X.
, and
Lou
,
S.
,
2018
, “
A Refractive Index Sensor Based on a D-Shaped Photonic Crystal Fiber With a Nanoscale Gold Belt
,”
Opt. Quant. Electron.
,
50
(
1
), p.
29
.10.1007/s11082-017-1276-0
111.
Zhang
,
Z.
,
Yang
,
J.
,
He
,
X.
,
Zhang
,
J.
,
Huang
,
J.
,
Chen
,
D.
, and
Han
,
Y.
,
2018
, “
Plasmonic Refractive Index Sensor With High Figure of Merit Based on Concentric-Rings Resonator
,”
Sensors
,
18
(
2
), p.
116
.10.3390/s18010116
112.
Zhang
,
Z.
,
He
,
J.
,
Du
,
B.
,
Guo
,
K.
, and
Wang
,
Y.
,
2019
, “
Highly Sensitive Gas Refractive Index Sensor Based on Hollow-Core Photonic Bandgap Fiber
,”
Opt. Exp.
,
27
(
21
), pp.
29649
29658
.10.1364/OE.27.029649
113.
Zhang
,
Z.
,
Li
,
S.
,
Liu
,
Q.
,
Feng
,
X.
,
Zhang
,
S.
,
Wang
,
Y.
, and
Wu
,
J.
,
2018
, “
Groove Micro-Structure Optical Fiber Refractive Index Sensor With Nanoscale Gold Film Based on Surface Plasmon Resonance
,”
Opt. Fiber Technol.
,
43
, pp.
45
48
.10.1016/j.yofte.2018.04.009
114.
Zhao
,
F.
,
Xu
,
B.
,
Wang
,
D.
,
Zhang
,
Y.
, and
Yang
,
J.
,
2019
, “
Highly Sensitive Refractive Index Sensor With Fiber in-Line Fabry-Perot Interferometers Based on Vernier Effect
,” 18th International Conference on Optical Communications and Networks (
ICOCN
), Huangshan, China, Aug. 5–8, pp.
1
3
.10.1109/ICOCN.2019.8934316
115.
Zhao
,
Y.
,
Xia
,
F.
, and
Li
,
J.
,
2016
, “
Sensitivity-Enhanced Photonic Crystal Fiber Refractive Index Sensor With Two Waist-Broadened Tapers
,”
J. Lightwave Technol.
,
34
(
4
), pp.
1373
1379
.10.1109/JLT.2016.2519534
116.
Zhao
,
Y.
,
Xia
,
F.
,
Hu
,
H.
, and
Chen
,
M.
,
2017
, “
A Novel Photonic Crystal Fiber Mach–Zehnder Interferometer for Enhancing Refractive Index Measurement Sensitivity
,”
Opt. Commun.
,
402
, pp.
368
374
.10.1016/j.optcom.2017.06.033
117.
Zheng
,
K.
, and
Shang
,
L.
,
2017
, “
Refractive Index Sensor Based on Liquid-Filled Defect Hollow Core Bragg Fiber for High Index Sensing
,” 16th International Conference on Optical Communications and Networks (
ICOCN
), Wuzhen, China, Aug. 7-10, pp.
1
3
.10.1109/ICOCN.2017.8121279
118.
ZhengWu
,
Y.
,
Zhang
,
Z. H.
,
Shum
,
P.
,
Humbert
,
P. G.
, and
Dinh
,
X. Q.
,
2017
, “
Design of Fabry-Perot Refractometer Based on a Simplified Hollow-Core PCF With a CFBG Pair
,” Conference on Lasers and Electro-Optics Pacific Rim (
CLEO-PR
), Singapore, July 31–Aug. 4, p.
s2047
.10.1109/CLEOPR.2017.8118967
119.
Zhu
,
F.
,
Zhang
,
Y.
,
Su
,
H.
,
Guo
,
Y.
, and
Yuan
,
P.
,
2018
, “
All-Fiber Inline Michelson Interferometer for Simultaneous Measurement of Refractive Index and Temperature
,”
SciFed J. Laser Opt.
,
2
(
1
), pp.
1
5
.
You do not currently have access to this content.