Abstract

Room temperature (RT) electrical conductivity and microstructure of polymer-derived SiC pyrolyzed at temperatures ranging from 1200 °C to 1800 °C were studied. We have shown that both free carbon content and pyrolysis temperature have significant effects on the DC conductivity of polymer derived ceramic (PDC) SiC. The RT DC conductivity of the PDC SiC increased gradually with increasing pyrolysis temperature, and it drastically increases 3 orders of magnitude after 1500 °C. This high electrical conductivity occurs due to the formation of a network of turbostratic carbon (percolative network). Below the percolation regime, hopping enables the electron movement from one carbon cluster site to another. Microstructural investigation with X-ray diffraction (XRD), Raman, and transmission electron microscopy (TEM) analysis showed that the crystal size of SiC increases with increasing pyrolysis temperature, and carbon clusters act as an inhibitor for grain growth at lower pyrolysis temperature. Upon dissociation of clusters, accelerated grain growth occurs and graphitization of carbon occurs along the grains.

References

1.
Colombo
,
P.
,
Mera
,
G.
,
Riedel
,
R.
, and
Soraru
,
G. D.
,
2010
, “
Polymer-Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics
,”
J. Am. Ceram. Soc.
,
93
(
7
), pp.
1805
1837
.10.1111/j.1551-2916.2010.03876.x
2.
Yoshida
,
K.
,
2010
, “
Development of Silicon Carbide Fiber-Reinforced Silicon Carbide Matrix Composites With High Performance Based on Interfacial and Microstructure Control
,”
J. Ceram. Soc. Jpn.
,
118
(
1374
), pp.
82
90
.10.2109/jcersj2.118.82
3.
Janakiraman
,
N.
, and
Aldinger
,
F.
,
2009
, “
Fabrication and Characterization of Fully Dense Si–C–N Ceramics From a Poly (Ureamethylvinyl) Silazane Precursor
,”
J. Eur. Ceram. Soc.
,
29
(
1
), pp.
163
173
.10.1016/j.jeurceramsoc.2008.05.028
4.
Liew
,
L.
,
Zhang
,
W.
,
An
,
L.
,
Shah
,
S.
,
Luo
,
R.
,
Liu
,
Y.
,
Cross
,
T.
,
Dunn
,
M. L.
,
Bright
,
V.
,
Daily
,
J. W.
, and
Raj
,
R.
,
2000
, “
Ceramic MEMS
,”
Am. Ceram. Soc. Bull.
,
80
(
5
), p.
25
.https://www.researchgate.net/profile/Rishi_Raj4/publication/279543213_Ceramic_MEMS_-_New_materials_innovative_processing_and_future_applications/links/56b20e0408ae56d7b06c9d9d.pdf
5.
Wang
,
Y.
,
Jiang
,
T.
,
Zhang
,
L.
, and
An
,
L.
,
2009
, “
Optical Absorption in Polymer-Derived Amorphous Silicon Oxycarbonitrides
,”
J. Am. Ceram. Soc.
,
92
(
12
), pp.
3111
3113
.10.1111/j.1551-2916.2009.03333.x
6.
Zhang
,
L.
,
Wang
,
Y.
,
Wei
,
Y.
,
Xu
,
W.
,
Fang
,
D.
,
Zhai
,
L.
,
Lin
,
K. C.
, and
An
,
L.
,
2008
, “
A Silicon Carbonitride Ceramic With Anomalously High Piezoresistivity
,”
J. Am. Ceram. Soc.
,
91
(
4
), pp.
1346
1349
.10.1111/j.1551-2916.2008.02275.x
7.
Iwamoto
,
Y.
,
Völger
,
W.
,
Kroke
,
E.
,
Riedel
,
R.
,
Saitou
,
T.
, and
Matsunaga
,
K.
,
2004
, “
Crystallization Behavior of Amorphous Silicon Carbonitride Ceramics Derived From Organometallic Precursors
,”
J. Am. Ceram. Soc.
,
84
(
10
), pp.
2170
2178
.10.1111/j.1151-2916.2001.tb00983.x
8.
Gregori
,
G.
,
Kleebe
,
H. J.
,
Brequel
,
H.
,
Enzo
,
S.
, and
Ziegler
,
G.
,
2005
, “
Microstructure Evolution of Precursors-Derived SiCN Ceramics Upon Thermal Treatment Between 1000 and 1400 C
,”
J. Non-Crystalline Solids
,
351
(
16–17
), pp.
1393
1402
.10.1016/j.jnoncrysol.2005.03.025
9.
Seitz
,
J.
,
Bill
,
J.
,
Egger
,
N.
, and
Aldinger
,
F.
,
1996
, “
Structural Investigations of Si/C/N-Ceramics From Polysilazane Precursors by Nuclear Magnetic Resonance
,”
J. Eur. Ceram. Soc.
,
16
(
8
), pp.
885
891
.10.1016/0955-2219(96)00007-6
10.
Haluschka
,
C.
,
Kleebe
,
H. J.
,
Franke
,
R.
, and
Riedel
,
R.
,
2000
, “
Silicon Carbonitride Ceramics Derived From Polysilazanes—Part I: Investigation of Compositional and Structural Properties
,”
J. Eur. Ceram. Soc.
,
20
(
9
), pp.
1355
1364
.10.1016/S0955-2219(00)00010-8
11.
Haluschka
,
C.
,
Engel
,
C.
, and
Riedel
,
R.
,
2000
, “
Silicon Carbonitride Ceramics Derived From Polysilazanes—Part II: Investigation of Electrical Properties
,”
J. Eur. Ceram. Soc.
,
20
(
9
), pp.
1365
1374
.10.1016/S0955-2219(00)00009-1
12.
Colombo
,
P.
, ed.,
2010
,
Polymer Derived Ceramics: From Nano-Structure to Applications
,
DEStech Publications
, Lancaster, PA.
13.
Wang
,
Y.
,
Zhang
,
L.
,
Xu
,
W.
,
Jiang
,
T.
,
Fan
,
Y.
,
Jiang
,
D.
, and
An
,
L.
,
2008
, “
Effect of Thermal Initiator Concentration on the Electrical Behavior of Polymer-Derived Amorphous Silicon Carbonitrides
,”
J. Am. Ceram. Soc.
,
91
(
12
), pp.
3971
3975
.10.1111/j.1551-2916.2008.02782.x
14.
Mera
,
G.
,
Riedel
,
R.
,
Poli
,
F.
, and
Müller
,
K.
,
2009
, “
Carbon-Rich SiCN Ceramics Derived From Phenyl-Containing Poly (Silylcarbodiimides)
,”
J. Eur. Ceram. Soc.
,
29
(
13
), pp.
2873
2883
.10.1016/j.jeurceramsoc.2009.03.026
15.
Mera
,
G.
,
Tamayo
,
A.
,
Nguyen
,
H.
,
Sen
,
S.
, and
Riedel
,
R.
,
2010
, “
Nanodomain Structure of Carbon-Rich Silicon Carbonitride Polymer-Derived Ceramics
,”
J. Am. Ceram. Soc.
,
93
(
4
), pp.
1169
1175
.10.1111/j.1551-2916.2009.03558.x
16.
Cordelair
,
J.
, and
Greil
,
P.
,
2000
, “
Electrical Conductivity Measurements as a Microprobe for Structure Transitions in Polysiloxane Derived Si–O–C Ceramics
,”
J. Eur. Ceram. Soc.
,
20
(
12
), pp.
1947
1957
.10.1016/S0955-2219(00)00068-6
17.
Wang
,
K.
,
Ma
,
B.
,
Li
,
X.
,
Wang
,
Y.
, and
An
,
L.
,
2014
, “
Effect of Pyrolysis Temperature on the Structure and Conduction of Polymer-Derived SiC
,”
J. Am. Ceram. Soc.
,
97
(
7
), pp.
2135
2138
.10.1111/jace.12931
18.
Ferreira
,
E. M.
,
Moutinho
,
M. V.
,
Stavale
,
F.
,
Lucchese
,
M. M.
,
Capaz
,
R. B.
,
Achete
,
C. A.
, and
Jorio
,
A.
,
2010
, “
Evolution of the Raman Spectra From Single-, Few-, and Many-Layer Graphene With Increasing Disorder
,”
Phys. Rev. B
,
82
(
12
), p.
125429
.10.1103/PhysRevB.82.125429
19.
Tuinstra
,
F.
, and
Koenig
,
J. L.
,
1970
, “
Raman Spectrum of Graphite
,”
J. Chem. Phys.
,
53
(
3
), pp.
1126
1130
.10.1063/1.1674108
20.
Ferrari
,
A. C.
, and
Robertson
,
J.
,
2001
, “
Resonant Raman Spectroscopy of Disordered, Amorphous, and Diamondlike Carbon
,”
Phys. Rev. B
,
64
(
7
), p.
075414
.10.1103/PhysRevB.64.075414
21.
Wieligor
,
M.
,
Wang
,
Y.
, and
Zerda
,
T. W.
,
2005
, “
Raman Spectra of Silicon Carbide Small Particles and Nanowires
,”
J. Phys.: Condens. Matter
,
17
(
15
), p.
2387
.10.1088/0953-8984/17/15/010
22.
Ferrari
,
A. C.
, and
Robertson
,
J.
,
2004
, “
Raman Spectroscopy of Amorphous, Nanostructured, Diamond–Like Carbon, and Nanodiamond
,”
Philos. Trans. R. Soc. London. Ser. A: Math., Phys. Eng. Sci.
,
362
(
1824
), pp.
2477
2512
.10.1098/rsta.2004.1452
23.
Kurtenbach
,
D.
,
Martin
,
H. P.
,
Müller
,
E.
,
Roewer
,
G.
, and
Hoell
,
A.
,
1998
, “
Crystallization of Polymer Derived Silicon Carbide Materials
,”
J. Eur. Ceram. Soc.
,
18
(
13
), pp.
1885
1891
.10.1016/S0955-2219(98)00136-8
24.
Delverdier
,
O.
,
Monthioux
,
M.
,
Mocaer
,
D.
, and
Pailler
,
R.
,
1993
, “
Thermal Behavior of Polymer-Derived Ceramics—I: Si-C and Si-CO Systems From Both Commercial and New Polycarbosilane (PCS) Precursors
,”
J. Eur. Ceram. Soc.
,
12
(
1
), pp.
27
41
.10.1016/0955-2219(93)90068-3
You do not currently have access to this content.