Abstract

Helmets have evolved through improvements in shell and suspension materials, and better designs that can absorb ballistic and blunt impact energy. In the past 20 years, threats to U.S. Warfighters have increased with the prevalence of buried improvised explosive devices simultaneously producing overpressure, blunt and ballistic impact effects, as well as thermal loading in extreme desert conditions. The literature to date does not show any research that integrates multiple types of loading in helmet system design and performance analysis. The scope of this paper is to integrate such loadings into a design framework that enables trade space analysis across multiple threats. Blunt impact and blast overpressure loadings are simulated using computational fluid dynamics (CFD) and structural mechanics approaches presented by the authors earlier. The thermal loading and its effects are modeled as forced convection due to ambient directional winds to assess each design's efficiency in facilitating evaporative cooling via perspiration and quantified by transport of moisture-laden air away from the head. Blast overpressure and blunt impact loadings, along with thermal loading, are used for multiple configurations of the helmet suspension system as representative cases. The results from the simulated cases are integrated within a framework combining the effects of the loadings to assess helmet system design. We consider two different configurations of helmet systems in this paper and present the results in detail.

References

1.
Kulkarni
,
S. G.
,
Gao
,
X. L.
,
Horner
,
S. E.
,
Zheng
,
J. Q.
, and
David
,
N. V.
,
2013
, “
Ballistic Helmets–Their Design, Materials, and Performance Against Traumatic Brain Injury
,”
Compos. Struct.
,
101
, pp.
313
331
.10.1016/j.compstruct.2013.02.014
2.
National Research Council
,
2014
,
Review of Department of Defense Test Protocols for Combat Helmets
,
The National Academies Press
,
Washington, DC
.
3.
Zhang
,
T. G.
,
Satapathy
,
S. S.
,
Vargas-Gonzalez
,
L. R.
, and
Walsh
,
S. M.
,
2015
, “
Ballistic Impact Response of Ultra-High-Molecular-Weight Polyethylene (UHMWPE)
,”
Compos. Struct.
,
133
, pp.
191
201
.10.1016/j.compstruct.2015.06.081
4.
McEntire
,
B. J.
, and
Whitley
,
P.
, “
Blunt Impact Performance Characteristics of the Advanced Combat Helmet and the Paratrooper and Infantry Personnel Armor System for Ground Troops Helmet
,”
Defense Technical Information Center
,
Fort Belvoir, VA
, Report No.
2005-12
.https://apps.dtic.mil/sti/citations/ADA437530
5.
Sami
,
B. A.
,
Halimi
,
M. T.
,
Hassen
,
M. B.
, and
Faouzi
,
S.
,
2011
, “
Heat and Moisture Transfer in Safety Helmet
,”
Int. J. Heat Mass Transfer
,
5
(
1
), p.
41
.https://www.researchgate.net/publication/264534717_Heat_and_moisture_transfer_in_safety_helmet
6.
Mlynarczyk
,
M.
,
Bogdan
,
A.
, and
Fejdyś
,
M.
,
2014
, “
Influence of Different Types of the Internal System of the Ballistic Helmet Shell on the Thermal Insulation Measured by a Manikin Headform
,”
Int. J. Ind. Ergonom.
,
44
(
3
), pp.
421
427
.10.1016/j.ergon.2013.11.011
7.
Tan
,
X. G.
,
Saunders
,
R.
, and
Matic
,
P.
, “
Combat Helmet Pad Suspension Performance for Anthropomorphic Fit Designs, Brain Functional Areas, and Injury Considerations
,”
ASME
Paper No. IMECE 2017-70619.10.1115/IMECE2017-70619
8.
Tan
,
X. G.
, and
Matic
,
P.
,
2020
, “
Simulation of Cumulative Exposure Statistics for Blast Pressure Transmission Into the Brain
,”
Mil. Med.
,
185
(
Suppl_1
), pp.
214
226
.10.1093/milmed/usz308
9.
Tan
,
X. G.
, and
Matic
,
P.
, 2018, “
Blast Pressure Effects on the Helmet Shell, Helmet Pad, Skull and Brain System
,”
Proceedings of 25th International Symposium on Military Aspects of Blast and Shock
,
Hague, The Netherlands
, Sept.
21
25
.https://mabs.tcnet.ch/data/documents/25-017.pdf
10.
Tan
,
X. G.
, and
Bagchi
,
A.
,
2018
, “
Computational Analysis for Validation of Blast Induced Traumatic Brain Injury and Protection of Combat Helmet
,”
ASME
Paper No. IMECE 2018-87689.10.1115/IMECE2018-87689
11.
Rodríguez-Millán
,
M.
,
Tan
,
L. B.
,
Tse
,
K. M.
,
Lee
,
H. P.
, and
Miguélez
,
M. H.
,
2017
, “
Effect of Full Helmet Systems on Human Head Responses Under Blast Loading
,”
Mater. Des.
,
117
, pp.
58
71
.10.1016/j.matdes.2016.12.081
12.
Cotton
,
R. T.
,
Pearce
,
C. W.
,
Young
,
P. G.
,
Kota
,
N.
,
Leung
,
A. C.
,
Bagchi
,
A.
, and
Qidwai
,
S. M.
,
2016
, “
Development of a Geometrically Accurate and Adaptable Finite Element Head Model for Impact Simulation: The Naval Research Laboratory-Simpleware Head Model
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
1
), pp.
101
113
.10.1080/10255842.2014.994118
13.
Tan
,
X. G.
,
Przekwas
,
A. J.
, and
Gupta
,
R. K.
,
2017
, “
Computational Modeling of Blast Wave Interaction With a Human Body and Assessment of Traumatic Brain Injury
,”
Shock Waves
,
27
(
6
), pp.
889
904
.10.1007/s00193-017-0740-x
14.
Fernandes
,
F. A. O.
,
Tchepel
,
D.
,
Alves de Sousa
,
R. J.
, and
Ptak
,
M.
,
2018
, “
Development and Validation of a New Finite Element Human Head Model: Yet Another Head Model (YEAHM)
,”
Eng. Comput.
,
35
(
1
), pp.
477
496
.10.1108/EC-09-2016-0321
15.
Takhounts
,
E. G.
,
Eppinger
,
R. H.
,
Campbell
,
J. Q.
,
Tannous
,
R. E.
,
Power
,
E. D.
, and
Shook
,
L. S.
,
2003
, “
On the Development of the SIMon Finite Element Head Model
,”
Stapp Car Crash J
,
47
, pp.
107
133
.https://saemobilus.sae.org/papers/development-simon-finite-element-head-model-2003-22-0007
16.
Deck
,
C.
, and
Willinger
,
R.
,
2008
, “
Improved Head Injury Criteria Based on Head FE Model
,”
Int. J. Crashworthiness
,
13
(
6
), pp.
667
678
.10.1080/13588260802411523
17.
Tan
,
X. G.
, and
Bagchi
,
A.
,
2019
, “
Computational Analysis of Combat Helmet Protection Against Blunt Impact to Head
,”
ASME
Paper No. IMECE 2019-10903.10.1115/IMECE2019-10903
18.
Li
,
X. G.
,
Gao
,
X.-L.
, and
Kleiven
,
S.
,
2016
, “
Behind Helmet Blunt Trauma Induced by Ballistic Impact: A Computational Model
,”
Int. J. Impact Eng.
,
91
, pp.
56
67
.10.1016/j.ijimpeng.2015.12.010
19.
Zhang
,
L.
,
Makwana
,
R.
, and
Sharma
,
S.
,
2013
, “
Brain Response to Primary Blast Wave Using Validated Finite Element Models of Human Head and Advanced Combat Helmet
,”
Front. Neurol.
,
4
, p.
88
.10.3389/fneur.2013.00088
20.
Yu
,
X.
, and
Ghajari
,
M.
,
2022
, “
Protective Performance of Helmets and Goggles in Mitigating Brain Biomechanical Response to Primary Blast Exposure
,”
Ann. Biomed. Eng.
,
50
(
11
), pp.
1579
1595
.10.1007/s10439-022-02936-x
21.
Tan
,
X. G.
, and
Bagchi
,
A.
, “
Computational Modeling of Combat Helmet Performance Analysis Integrating Blunt and Blast Loadings
,”
ASME
Paper No. IMECE 2019-2392510.1115/IMECE 2019-23925.
22.
Holtz
,
R.
,
Matic
,
P.
, and
Mott
,
D.
,
2013
, “
Passive Cooling of Body Armor
,”
APS March Meeting
,
American Physical Society
, Baltimore, MD, Mar. 18–22.
23.
Mott
,
D. R.
,
Kercher
,
A. D.
, and
Corrigan
,
A.
,
2017
, “
Natural Convection About an Idealized Standing Human With and Without Body Armor
,”
AIAA
Paper No. 2017-1011.10.2514/6.2017-1011
24.
Mott
,
D. R.
,
Khine
,
Y. Y.
,
Tan
,
X. G.
, and
Bagchi
,
A.
,
2021
, “
Head Evaporative Cooling From Forced And Natural Convection for Two Helmet-Pad Configuration
,”
ASME
Paper No. IMECE2021-73398.10.1115/IMECE2021-73398
25.
Salmanzadeh
,
M.
,
Zahedi
,
G.
,
Ahmadi
,
G.
,
Marr
,
D. R.
, and
Glauser
,
M.
,
2012
, “
Computational Modeling of Effects of Thermal Plume Adjacent to the Body on the Indoor Airflow and Particle Transport
,”
J. Aerosol Sci.
,
53
, pp.
29
39
.10.1016/j.jaerosci.2012.05.005
26.
Kilic
,
M.
, and
Sevilgen
,
G.
,
2008
, “
Modelling Airflow, Heat Transfer and Moisture Transport Around a Standing Human Body by Computational Fluid Dynamics
,”
Int. Commun. Heat Mass Transfer
,
35
(
9
), pp.
1159
1164
.10.1016/j.icheatmasstransfer.2008.05.006
27.
Ono
,
T.
,
Murakami
,
S.
,
Ooka
,
R.
, and
Omori
,
T.
,
2008
, “
Numerical and Experimental Study on Convective Heat Transfer of the Human Body in the Outdoor Environment
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(
10–11
), pp.
1719
1732
.10.1016/j.jweia.2008.02.007
28.
Sorensen
,
D.
, and
Voigt
,
L.
,
2003
, “
Modelling Flow and Heat Transfer Around a Seated Human Body by Computational Fluid Dynamics
,”
Build. Environ.
,
38
(
6
), pp.
753
762
.10.1016/S0360-1323(03)00027-1
29.
Jia
,
X.
,
McLaughlin
,
J. B.
,
Derksen
,
J.
, and
Ahmadi
,
G.
,
2013
, “
Simulation of a Mannequin's Thermal Plume in a Small Room
,”
Comput. Math. Appl.
,
65
(
2
), pp.
287
295
.10.1016/j.camwa.2011.06.056
30.
Craven
,
B.
, and
Settles
,
G.
,
2006
, “
A Computational and Experimental Investigation of the Human Thermal Plume
,”
ASME J. Fluids Eng.
,
128
(
6
), pp.
1251
1258
.10.1115/1.2353274
31.
Tang
,
J.
,
Noakes
,
C.
,
Nielsen
,
P.
,
Eames
,
I.
,
Nicolle
,
A.
,
Li
,
Y.
, and
Settles
,
G.
,
2011
, “
Observing and Quantifying Airflows in the Infection Control of Aerosol- and Airborne-Transmitted Diseases: An Overview of Approaches
,”
J. Hosp. Infect.
,
77
(
3
), pp.
213
222
.10.1016/j.jhin.2010.09.037
32.
Clark
,
R.
, and
de Calcina-Goff
,
R.
,
2009
, “
Some Aspects of the Airborne Transmission of Infection
,”
J. R. Soc. Interface
,
6
(
suppl_6
), pp.
S767
S782
.10.1098/rsif.2009.0236.focus
33.
Settles
,
G. S.
, and
McGann
,
W. J.
,
2001
, “
Potential for Portal Detection of Human Chemical and Biological Contamination
,”
Chemical and Biological Sensing II
, Vol.
4378
,
P. J.
Gardner
, ed.,
SPIE, Bellingham, WA
.
34.
Bagchi
,
A.
,
Khine
,
Y. Y.
,
Mott
,
D. R.
, and
Tan
,
X. G.
, “
On a Framework to Integrate Performance of Helmet Systems for Blast, Blunt Impact and Thermal Loading
,”
ASME
Paper No. IMECE2021-73556.10.1115/IMECE2021-73556
35.
Tan
,
X. G.
,
Sajja
,
V. S. S. S.
,
D'Souza
,
M. M.
,
Gupta
,
R. K.
,
Long
,
J. B.
,
Singh
,
A. K.
, and
Bagchi
,
A.
,
2021
, “
A Methodology to Compare Biomechanical Simulations With Clinical Brain Imaging Analysis Utilizing Two Blunt Impact Cases
,”
Front. Bioeng. Biotechnol.
,
9
, p.
654677
.10.3389/fbioe.2021.654677
36.
Mott
,
D.
,
Kercher
,
A.
, and
Corrigan
,
A.
,
2016
, “
Evaporative Cooling of Idealized Torso Geometries Including Protective Armor
,”
AIAA
Paper No. 2016-3197.10.2514/6.2016-3197
37.
Zhang
,
L.
,
Yang
,
K. H.
, and
King
,
A. I.
,
2004
, “
A Proposed Injury Threshold for Mild Traumatic Brain Injury
,”
ASME J. Biomech. Eng.
,
126
(
2
), pp.
226
236
.10.1115/1.1691446
38.
Rafaels
,
K. A.
,
Bass
,
C. R.
,
Panzer
,
M. B.
,
Salzar
,
R. S.
,
Woods
,
W. A.
,
Feldman
,
S. H.
,
Walilko
,
T.
, et al.,
2012
, “
Brain Injury Risk From Primary Blast
,”
J. Trauma Acute Care Surg.
,
73
(
4
), pp.
895
901
.10.1097/TA.0b013e31825a760e
39.
Mott
,
D. R.
,
Schwer
,
D.
, and
Young
,
T.
,
2017
, “
Computational Fluid Dynamics Studies of Blast Loading on Helmeted Warfighters
,” NRL Memorandum Report, Washington, DC, Report No.
NRL/MR/6040-17-9762
.https://apps.dtic.mil/sti/tr/pdf/AD1048550.pdf
40.
Mott
,
D.
,
Young
,
T.
,
Schwer
,
D.
, and
Matic
,
P.
,
2015
, “
Assessing Blast Loading Within Obstacle Arrays
,”
AIAA
Paper No. 2015-2637.10.2514/6.2015-2637
You do not currently have access to this content.