Abstract

Fractures of the maxillofacial region are prevalent in both developed and developing nations. Maxillofacial fractures primarily occur as a result of incidents such as car crashes, physical assaults, and attacks. Although using miniplates to treat maxillofacial fractures is a widely accepted practice, the challenge lies in selecting the appropriate miniplate size that is tailored to the specific dimensions of the fracture in each patient. The study aims to evaluate and determine the most suitable design between a two-hole miniplate and a four-hole miniplate for securing a fractured mandible, with the ultimate goal of creating a customized solution for each patient. A mandible model is chosen with a diagonal length of 82 mm and created perpendicular fracture gaps measuring 1 mm to 3 mm on the left buccolingual section of the solid model. A two-hole and a four-hole miniplate are designed with different thicknesses (ranging from 1 mm to 2 mm) and gap distances (ranging from 6 mm to 12 mm). The miniplates were put together in a model of the mandible. To test their effectiveness, the combination of the mandible model and plates was subjected to various muscle forces, as well as the force of biting, using finite element analysis. At the mandible location, the four-hole miniplate implantation exhibits superior stabilization in comparison to the two-hole miniplate assembly. The miniplate's size and dimensions can be adjusted depending on the size of the fracture in the mandible, resulting in a patient-specific solution for the implantation of miniplate in the mandible.

References

1.
King
,
R. E.
,
Scianna
,
J. M.
, and
Petruzzelli
,
G. J.
,
2004
, “
Mandible Fracture Patterns: A Suburban Trauma Center Experience
,”
Am. J. Otolaryngol.
,
25
(
5
), pp.
301
307
.10.1016/j.amjoto.2004.03.001
2.
Dreizin
,
D.
,
Nam
,
A. J.
,
Tirada
,
N.
,
Levin
,
M. D.
,
Stein
,
D. M.
,
Bodanapally
,
U. K.
,
Mirvis
,
S. E.
, and
Munera
,
F.
,
2016
, “
Multidetector CT of Mandibular Fractures, Reductions, and Complications: A Clinically Relevant Primer for the Radiologist
,”
Radiographics
,
36
(
5
), pp.
1539
1564
.10.1148/rg.2016150218
3.
Vetter
,
J. D.
,
Topazian
,
R. G.
,
Goldberg
,
M. H.
, and
Smith
,
D. G.
,
1991
, “
Facial Fractures Occurring in a Medium-Sized Metropolitan Area: Recent Trends
,”
Int. J. Oral Maxillofac. Surg.
,
20
(
4
), pp.
214
216
.10.1016/S0901-5027(05)80177-8
4.
Sojot
,
A. J.
,
Meisami
,
T.
,
Sandor
,
G. K.
, and
Clokie
,
C. M.
,
2001
, “
Epidemiology of Mandibular Fractures Treated at the Toronto General Hospital: A Review of 246 Cases
,”
J.-Can. Dental Assoc.
,
67
(
11
), pp.
640
644
.https://pubmed.ncbi.nlm.nih.gov/11841744/
5.
Dongas
,
P.
, and
Hall
,
G. M.
,
2002
, “
Mandibular Fracture Patterns in Tasmania, Australia
,”
Aust. Dental J.
,
47
(
2
), pp.
131
137
.10.1111/j.1834-7819.2002.tb00316.x
6.
Mihailova
,
H.
,
2006
, “
Classifications of Mandibular Fractures Review
,”
J. IMAB
,
12
(
2
), pp.
3
5
.https://www.journal-imab-bg.org/statii-06/vol06_b2_3-5str.pdf
7.
Passi
,
D.
,
Malkunje
,
L.
,
Atri
,
M.
,
Chahal
,
D.
,
Singh
,
T. K.
, and
Goyal
,
J.
,
2017
, “
Newer Proposed Classification of Mandibular Fractures: A Critical Review With Recent Updates
,”
Ann. Med. Health Sci. Res.
, 7(
5
), pp.
314
318
.https://www.amhsr.org/articles/newer-proposedclassification-of-mandibular-fractures-a-critical-review-with-recent-updates-3704.html
8.
Rahpeyma
,
A.
,
Khajehahmadi
,
S.
, and
Abdollahpour
,
S.
,
2016
, “
Mandibular Symphyseal/Parasymphyseal Fracture With Incisor Tooth Loss: Preventing Lower Arch Constriction
,”
Craniomaxillofac. Trauma Reconstr.
,
9
(
1
), pp.
15
19
.10.1055/s-0035-1551542
9.
Cornelius
,
C. P.
,
Audigté
,
L.
,
Kunz
,
C.
,
Rudderman
,
R.
,
Buitrago-Téllez
,
C. H.
,
Frodel
,
J.
, and
Prein
,
J.
,
2014
, “
The Comprehensive AOCMF Classification System: Mandible Fractures-Level 2 Tutorial
,”
Craniomaxillofac. Trauma Reconstr.
,
7
(
1_suppl
), pp.
15
30
.10.1055/s-0034-1389557
10.
Chiodo
,
T. A.
, and
Milles
,
M.
,
2009
, “
Use of Monocortical Miniplates for the Intraoral Treatment of Mandibular Fractures
,”
Atlas Oral Maxillofac. Surg. Clinics
,
17
(
1
), pp.
19
25
.10.1016/j.cxom.2008.10.008
11.
Pickrell
,
B. B.
,
Serebrakian
,
A. T.
, and
Maricevich
,
R. S.
,
2017
, “
Mandible Fractures
,”
Semin. Plastic Surg.
,
31
(
02
), pp.
100
107
.10.1055/s-0037-1601374
12.
Mishra
,
N.
,
Thakkar
,
N.
,
Kar
,
I.
,
Baig
,
S. A.
,
Sharma
,
G.
,
Kar
,
R.
,
Sahu
,
G. R.
, and
Birmiwal
,
K. G.
,
2019
, “
3-D Miniplates Versus Conventional Miniplates in Treatment of Mandible Fractures
,”
J. Maxillofac. Oral Surg.
,
18
(
1
), pp.
65
72
.10.1007/s12663-017-1068-x
13.
Gupta
,
Y.
,
Iyer
,
R.
,
Dommeti
,
V. K.
,
Nutu
,
E.
,
Rana
,
M.
,
Merdji
,
A.
,
Biswas
,
J. K.
, and
Roy
,
S.
,
2021
, “
Design of Dental Implant Using Design of Experiment and Topology Optimization: A Finite Element Analysis Study
,”
Proc. Inst. Mech. Eng., Part H
,
235
(
2
), pp.
157
166
.10.1177/0954411920967146
14.
Ouldyerou
,
A.
,
Merdji
,
A.
,
Aminallah
,
L.
,
Roy
,
S.
,
Mehboob
,
H.
, and
Özcan
,
M.
,
2022
, “
Biomechanical Performance of Ti-PEEK Dental Implants in Bone: An in-Silico Analysis
,”
J. Mech. Behav. Biomed. Mater.
,
134
, p.
105422
.10.1016/j.jmbbm.2022.105422
15.
Biswas
,
J. K.
,
Mondal
,
N.
,
Choudhury
,
S.
,
Malas
,
A.
, and
Rana
,
M.
,
2022
, “
A Finite Element Study and Mathematical Modeling of Lumbar Pedicle Screw Along With Various Design Parameters
,”
J. Orthop. Sci.
, epub.10.1016/j.jos.2022.08.008
16.
Choudhury
,
S.
,
Dhason
,
R.
,
Roy
,
S.
, and
Datta
,
S.
,
2022
, “
Design Optimization of PEEK Hybrid Composite Cervical Cage
,”
Int. J. Multiscale Comput. Eng.
,
20
(
4
), pp.
1
16
.10.1615/IntJMultCompEng.2022039152
17.
Merdji
,
A.
,
Taharou
,
B.
,
Hillstrom
,
R.
,
Benaissa
,
A.
,
Roy
,
S.
,
Chong
,
P. L.
,
Mukdadi
,
O.
,
Della
,
N.
, and
Bouiadjra
,
B. A.
,
2020
, “
Finite-Element Study of Biomechanical Explanations for Bone Loss Around Dental Implants
,”
J. Long-Term Eff. Med. Implants
,
30
(
1
), pp.
21
30
.10.1615/JLongTermEffMedImplants.2020035028
18.
Gupta
,
A.
,
Rana
,
M.
,
Mondal
,
N.
,
Das
,
A.
,
Karmakar
,
A.
, and
Chowdhury
,
A. R.
,
2023
, “
Designing of Different Types of Gyroid Scaffold Architecture to Achieve Patient-Specific Osseointegration Friendly Mechanical Environment.
,”
Int. J. Multiscale Comput. Eng.
,
21
(
4
), pp.
1
15
.10.1615/IntJMultCompEng.2022043461
19.
Vignesh
,
M.
,
Ranjith Kumar
,
G.
,
Sathishkumar
,
M.
,
Manikandan
,
M.
,
Rajyalakshmi
,
G.
,
Ramanujam
,
R.
, and
Arivazhagan
,
N.
,
2021
, “
Development of Biomedical Implants Through Additive Manufacturing: A Review
,”
J. Mater. Eng. Perform.
,
30
(
7
), pp.
4735
4744
.10.1007/s11665-021-05578-7
20.
Bhattacharyya
,
R.
,
Rana
,
M.
,
Gupta
,
A.
,
Dutta Majumdar
,
D.
,
Dutta Majumdar
,
J.
, and
Roy Chowdhury
,
A.
,
2022
, “
Modelling of Porous Titanium and Understanding Its Mechanical Behavior Using Micro-Computed Tomography
,”
J. Mater. Eng. Performance
,
31
(
10
), pp.
8160
8168
.10.1007/s11665-022-06827-z
21.
Choudhury
,
S.
,
Raja
,
D.
,
Roy
,
S.
, and
Datta
,
S.
,
2020
, “
Stress Analysis of Different Types of Cages in Cervical Vertebrae: A Finite Element Study
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
912
(
2
), p.
022025
.10.1088/1757-899X/912/2/022025
22.
Boukhlif
,
A.
,
Merdji
,
A.
,
Roy
,
S.
,
Alkhaldi
,
H.
,
Abu-Alshaikh
,
I.
,
Della
,
N.
,
Cristache
,
C. M.
, and
Hillstrom
,
R.
,
2020
, “
Effect of Supporting Implants Inclination on Stability of Fixed Partial Denture: A Finite Element Study
,”
Proc. Inst. Mech. Eng., Part H
,
234
(
10
), pp.
1162
1171
.10.1177/0954411920944109
23.
Roy
,
S.
,
Panda
,
D.
,
Khutia
,
N.
, and
Chowdhury
,
A. R.
,
2014
, “
Pore Geometry Optimization of Titanium (Ti6Al4V) Alloy, for Its Application in the Fabrication of Customized Hip Implants
,”
Int. J. Biomater.
,
2014
, pp.
1
12
.10.1155/2014/313975
24.
Banerjee
,
A.
,
Rana
,
M.
,
Chakraborty
,
A.
,
Singh
,
A. P.
, and
Roy Chowdhury
,
A.
,
2022
, “
Influence of Implant Parameters on Biomechanical Stability of TMJ Replacement: A Finite Element Analysis
,”
Int. J. Artif. Organs
,
45
(
8
), pp.
715
721
.10.1177/03913988221107944
25.
Findik
,
Y.
,
Baykul
,
T.
,
Esenlik
,
E.
, and
Turkkahraman
,
M. H.
,
2017
, “
Surgical Difficulties, Success, and Complication Rates of Orthodontic Miniplate Anchorage Systems: Experience With 382 Miniplates
,”
Nigerian J. Clin. Pract.
,
20
(
5
), pp.
512
516
.10.4103/1119-3077.187320
26.
Bohner
,
L.
,
Beiglboeck
,
F.
,
Schwipper
,
S.
,
Lustosa
,
R. M.
,
Pieirna Marino Segura
,
C.
,
Kleinheinz
,
J.
, and
Jung
,
S.
,
2020
, “
Treatment of Mandible Fractures Using a Miniplate System: A Retrospective Analysis
,”
J. Clinical Med.
,
9
(
9
), p.
2922
.10.3390/jcm9092922
27.
Sukegawa
,
S.
,
Masui
,
M.
,
Sukegawa-Takahashi
,
Y.
,
Nakano
,
K.
,
Takabatake
,
K.
,
Kawai
,
H.
,
Nagatsuka
,
H.
, and
Furuki
,
Y.
,
2020
, “
Maxillofacial Trauma Surgery Patients With Titanium Osteosynthesis Miniplates: Remove or Not?
,”
J. Craniofacial Surg.
,
31
(
5
), pp.
1338
1342
.10.1097/SCS.0000000000006352
28.
O'Connell
,
J.
,
Murphy
,
C.
,
Ikeagwuani
,
O.
,
Adley
,
C.
, and
Kearns
,
G.
,
2009
, “
The Fate of Titanium Miniplates and Screws Used in Maxillofacial Surgery: A 10 Year Retrospective Study
,”
Int. J. Oral Maxillofac. Surg.
,
38
(
7
), pp.
731
735
.10.1016/j.ijom.2009.02.016
29.
Mittal
,
G.
,
Dubbudu
,
R. R.
, and
Cariappa
,
K. M.
,
2012
, “
Three Dimensional Titanium Mini Plates in Oral & Maxillofacial Surgery: A Prospective Clinical Trial
,”
J. Maxillofac. Oral Surg.
,
11
(
2
), pp.
152
159
.10.1007/s12663-011-0267-0
30.
Lai
,
G.
,
1997
, “
The Three-Dimensional Titanium Miniplate Rigid Fixation in the Treatment of Fracture of Maxilla
,”
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi.
,
11
(
4
), pp.
196
198
.https://pubmed.ncbi.nlm.nih.gov/9867976/
31.
Alfakhrany
,
A.
, and
Hasanein
,
A. M.
,
2018
, “
Biomechanical Evaluation of Three Dimensional Titanium Miniplates in Mandibular Fracture Fixation
,”
Egypt. Dental J.
,
64
(
2
), pp.
1015
1028
.10.21608/edj.2018.76949
32.
Al-Moraissi
,
E. A.
, and
Ellis
,
E.
, III
,
2014
, “
What Method for Management of Unilateral Mandibular Angle Fractures Has the Lowest Rate of Postoperative Complications? A Systematic Review and Meta-Analysis
,”
J. Oral Maxillofac. Surg.
,
72
(
11
), pp.
2197
2211
.10.1016/j.joms.2014.05.023
33.
Huang
,
Y. W.
,
Chang
,
C. H.
,
Wong
,
T. Y.
, and
Liu
,
J. K.
,
2012
, “
Bone Stress When Miniplates Are Used for Orthodontic Anchorage: Finite Element Analysis
,”
Am. J. Orthod. Dentofacial Orthop.
,
142
(
4
), pp.
466
472
.10.1016/j.ajodo.2012.04.019
34.
Gutwald
,
R.
,
Alpert
,
B.
, and
Schmelzeisen
,
R.
,
2003
, “
Principle and Stability of Locking Plates
,”
Keio J. Med.
,
52
(
1
), pp.
21
24
.10.2302/kjm.52.21
35.
Kumar
,
A. S.
,
Saravanan
,
B.
,
Balaji
,
J.
,
Rohini
,
T.
,
Prasad
,
C.
, and
Amirtha
,
J.
,
2020
, “
Six-Hole Versus Four-Hole Miniplates in Isolated, Unilateral Angle Fracture of the Mandible
,”
Ann. Maxillofac. Surg.
,
10
(
1
), pp.
16
24
.10.4103/ams.ams_168_19
36.
Mohd
,
Y. Q.
,
Reddy
,
S.
,
Sinha
,
R.
,
Agarwal
,
A.
,
Fatima
,
U.
, and
Abidullah
,
M.
,
2019
, “
Three-Dimensional Miniplate: For the Management of Mandibular Parasymphysis Fractures
,”
Ann. Maxillofac. Surg.
,
9
(
2
), pp.
333
339
.10.4103/ams.ams_172_17
37.
Gokkulakrishnan
,
S.
,
Singh
,
S.
,
Sharma
,
A.
, and
Shahi
,
A. K.
,
2012
, “
An Analysis of Postoperative Complications and Efficacy of 3-D Miniplates in Fixation of Mandibular Fractures
,”
Dental Res. J.
,
9
(
4
), pp.
414
421
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3491327/
38.
Yoon
,
Y. C.
,
Oh
,
C. W.
,
Lee
,
D. W.
,
Sim
,
J. A.
, and
Oh
,
J. K.
,
2020
, “
Miniplate Osteosynthesis in Fracture Surgeries: Case Series With Review of Concepts
,”
Injury
,
51
(
4
), pp.
878
886
.10.1016/j.injury.2020.02.044
39.
Ji
,
B.
,
Wang
,
C.
,
Liu
,
L.
,
Long
,
J.
,
Tian
,
W.
, and
Wang
,
H.
,
2010
, “
A Biomechanical Analysis of Titanium Miniplates Used for Treatment of Mandibular Symphyseal Fractures With the Finite Element Method
,”
Oral Surg., Oral Med., Oral Pathol., Oral Radiol., Endodontology
,
109
(
3
), pp.
e21
e27
.10.1016/j.tripleo.2009.11.003
40.
Gupte
,
S. H.
,
Chaddva
,
S.
,
Jethwani
,
Y.
,
Mohandas
,
A.
,
Kumavat
,
D. P.
, and
Jhaveri
,
N.
,
2016
, “
Evaluation of Efficacy of Three-Dimensional Stainless Steel Mini-Plates in the Treatment of Fractures of the Mandible: A Prospective Study
,”
J. Orthop. Case Rep.
,
6
(
5
), pp.
35
40
.10.13107/jocr.2250-0685.620
41.
Santos
,
G. S.
,
de Assis Costa
,
M. D.
,
de Oliveira Costa
,
C.
,
Souza
,
F. Á.
, Júnior
,
Garcia
,
I. R.
, and
De Melo
,
W. M.
,
2013
, “
Failure of Miniplate Osteosynthesis for the Management of Atrophic Mandibular Fracture
,”
J. Craniofacial Surg.
,
24
(
4
), pp.
e415
e418
.10.1097/SCS.0b013e3182942cf9
42.
Dugal
,
A.
, and
Thakur
,
G.
,
2010
, “
Surface Analysis of Indigenous Stainless Steel Miniplates Used in Facial Fractures
,”
J. Maxillofac. Oral Surg.
,
9
(
4
), pp.
403
406
.10.1007/s12663-010-0094-8
43.
Jain
,
M. K.
,
Manjunath
,
K. S.
,
Bhagwan
,
B. K.
, and
Shah
,
D. K.
,
2010
, “
Comparison of 3-Dimensional and Standard Miniplate Fixation in the Management of Mandibular Fractures
,”
J. Oral Maxillofac. Surg.
,
68
(
7
), pp.
1568
1572
.10.1016/j.joms.2009.07.083
44.
Nalbantgil
,
D.
,
Tozlu
,
M.
,
Ozdemir
,
F.
,
Oztoprak
,
M. O.
, and
Arun
,
T.
,
2012
, “
FEM Analysis of a New Miniplate: Stress Distribution on the Plate, Screws and the Bone
,”
Eur. J. Dentistry
,
6
(
1
), pp.
009
015
.10.1055/s-0039-1698925
45.
Manjunath
,
G. A.
, and
Subramanya
,
G.
,
2019
, “
Evaluation of 3-Dimensional Titanium Miniplates in Mandibular Fractures
,”
Int. J. Contemp. Med. Res.
,
6
(
3
), pp.
c12
c16
.10.21276/ijcmr.2019.6.3.38
46.
Jung
,
B. T.
,
Kim
,
W. H.
,
Park
,
B.
,
Lee
,
J. H.
,
Kim
,
B.
, and
Lee
,
J. H.
,
2020
, “
Biomechanical Evaluation of Unilateral Subcondylar Fracture of the Mandible on the Varying Materials: A Finite Element Analysis
,”
PloS One
,
15
(
10
), p.
e0240352
.10.1371/journal.pone.0240352
47.
Mohammed
,
A.
,
Lecturer of Oral and Maxillofacial Surgery, Faculty of Oral and Dental Medicine, South Valley University, Qena, Egypt
,
2017
, “
Effect of the Shape of Mini Plate on the Stability of Mandibular Fracture
,”
Int. J. Dentistry Res.
,
2
(
2
), pp.
49
52
.10.31254/dentistry.2017.2207
48.
Prabhakar
,
C.
,
Shetty
,
J. N.
,
Hemavathy
,
O. R.
, and
Guruprasad
,
Y.
,
2011
, “
Efficacy of 2-mm Locking Miniplates in the Management of Mandibular Fractures Without Maxillomandibular Fixation
,”
Natl. J. Maxillofac. Surg.
,
2
(
1
), pp.
28
32
.10.4103/0975-5950.85850
49.
Sundresh
,
N. J.
,
Das
,
N.
,
Jayakrishnan
,
R.
, and
Kumar
,
A.
,
2016
, “
Mechanical Analysis of Miniplates Used in Maxillofacial Surgery
,”
World J. Pharm. Res.
,
5
(
12
), pp.
1377
1384
.https://wjpr.s3.ap-south-1.amazonaws.com/article_issue/1481507979.pdf
50.
Choudhury
,
S.
,
Rana
,
M.
,
Chakraborty
,
A.
,
Majumder
,
S.
,
Roy
,
S.
,
RoyChowdhury
,
A.
, and
Datta
,
S.
,
2022
, “
Design of Patient Specific Basal Dental Implant Using Finite Element Method and Artificial Neural Network Technique
,”
Proc. Inst. Mech. Eng., Part H
,
236
(
9
), pp.
1375
1387
.10.1177/09544119221114729
51.
Banerjee
,
A.
,
Roy Chowdhury
,
A.
, and
Majumder
,
S.
,
2022
, “
Temporomandibular Joint Disorder and Biomechanical Simulation of the Replacement: A Literature Review on Various Surgical and Nonsurgical Methods, and Development of the Finite Element Method Approach in the Treatment
,”
J. Eng. Sci. Med. Diagn. Ther.
,
5
(
2
) p. 021005.10.1115/1.4054095
52.
Chakraborty
,
A.
,
Datta
,
P.
,
Majumder
,
S.
,
Mondal
,
S. C.
, and
Roychowdhury
,
A.
,
2020
, “
Finite Element and Experimental Analysis to Select Patient's Bone Condition Specific Porous Dental Implant, Fabricated Using Additive Manufacturing
,”
Comput. Biol. Med.
,
124
, p.
103839
.10.1016/j.compbiomed.2020.103839
53.
Arbag
,
H.
,
Korkmaz
,
H. H.
,
Ozturk
,
K.
, and
Uyar
,
Y.
,
2008
, “
Comparative Evaluation of Different Miniplates for Internal Fixation of Mandible Fractures Using Finite Element Analysis
,”
J. Oral Maxillofac. Surg.
,
66
(
6
), pp.
1225
1232
.10.1016/j.joms.2005.11.092
54.
Soodan
,
K. S.
,
Priyadarshni
,
P.
,
Das
,
D.
, and
Gupta
,
M.
,
2018
, “
Techniques of Rigid Internal Fixation for Mandibular Fractures
,”
Acta. Sci. Dent. Sci.
,
2
(
12
), pp.
153
59
.https://actascientific.com/ASDS/pdf/ASDS-02-0395.pdf
55.
Chaudhary
,
N.
,
Lovald
,
S. T.
,
Wagner
,
J.
,
Khraishi
,
T.
, and
Baack
,
B.
,
2008
, “
Experimental and Numerical Modeling of Screws Used for Rigid Internal Fixation of Mandibular Fractures
,”
Modell. Simul. Eng.
,
2008
, pp.
1
11
.10.1155/2008/628120
56.
Reddy
,
L.
,
Lee
,
D.
,
Vincent
,
A.
,
Shokri
,
T.
,
Sokoya
,
M.
, and
Ducic
,
Y.
,
2019
, “
Secondary Management of Mandible Fractures
,”
Facial Plast. Surg.
,
35
(
6
), pp.
627
632
.10.1055/s-0039-1700887
57.
Pedemonte
,
C.
,
Carmona
,
A.
,
González
,
E.
,
Vargas
,
I.
,
Lopetegui
,
F.
, and
Rojas
,
E.
,
2018
, “
Correlation Between the Posterior Mandibular Width and the Lingual Gap Caused by Symphyseal Fractures Using a Virtual Model
,”
J. Oral Maxillo. Surg.
,
76
(
4
), pp.
832e1
832e8
.10.1016/j.joms.2017.11.038
58.
Taharou
,
B.
,
Merdji
,
A.
,
Hillstrom
,
R.
,
Benaissa
,
A.
,
Roy
,
S.
,
Della
,
N.
,
Aid
,
A.
, and
Mukdadi
,
O.
,
2021
, “
Biomechanical Evaluation of Bone Quality Effect on Stresses at Bone-Implant Interface: A Finite Element Study
,”
J. Appl. Comput. Mech.
,
7
(
3
), pp.
1266
1275
.10.22055/JACM.2020.32323.2005
59.
Dommeti
,
V. K.
,
Pramanik
,
S.
, and
Roy
,
S.
,
2022
, “
Influence of Hydroxyapatite Composite Coating on the Textured Surface of Patient Specific Dental Implant: An in Silico 3D Finite Element Study
,”
Mech. Adv. Mater. Struct.
, pp.
1
9
.10.1080/15376494.2022.2116760
60.
Ouldyerou
,
A.
,
Merdji
,
A.
,
Aminallah
,
L.
,
Msomi
,
V.
,
Chong
,
P. L.
, and
Roy
,
S.
,
2022
, “
Biomechanical Evaluation of Marginal Bone Loss in the Surrounding Bone Under Different Loading: 3D FE Study
,”
Int. J. Multiscale Comput. Eng.
,
20
(
4
), pp.
43
56
.10.1615/IntJMultCompEng.2022043707
61.
Dommeti
,
V. K.
,
Pramanik
,
S.
, and
Roy
,
S.
,
2021
, “
Mechanical Response of Different Types of Surface Texture for Medical Application Using Finite Element Study
,”
Proc. Inst. Mech. Eng., Part H
,
235
(
6
), pp.
717
725
.10.1177/09544119211002722
62.
Chatterjee
,
S.
,
Sarkar
,
S.
,
Kalidindi
,
S. R.
, and
Basu
,
B.
,
2019
, “
Periprosthetic Biomechanical Response Towards Dental Implants, With Functional Gradation, for Single/Multiple Dental Loss
,”
J. Mech. Behav. Biomed. Mater.
,
94
, pp.
249
258
.10.1016/j.jmbbm.2019.03.001
63.
Tseng
,
B. T.
,
Yen
,
Y. C.
,
Cheng
,
C. S.
,
Wang
,
C. H.
,
Lien
,
K. H.
,
Huang
,
C. M.
, and
Su
,
K. C.
,
2022
, “
Biomechanical Effects of Different Miniplate Thicknesses and Fixation Methods Applied in BSSO Surgery Under Two Occlusal Conditions
,”
J. Med. Biol. Eng.
,
42
(
4
), pp.
445
458
.10.1007/s40846-022-00733-4
64.
Largura
,
L. Z.
,
Argenta
,
M. A.
,
Sakima
,
M. T.
,
Camargo
,
E. S.
,
Guariza-Filho
,
O.
, and
Tanaka
,
O. M.
,
2014
, “
Bone Stress and Strain After Use of a Miniplate for Molar Protraction and Uprighting: A 3-Dimensional Finite Element Analysis
,”
Am. J. Orthod. Dentofacial Orthop.
,
146
(
2
), pp.
198
206
.10.1016/j.ajodo.2014.04.022
65.
Atik
,
F.
,
Ataç
,
M. S.
,
Özkan
,
A. R.
,
Kılınç
,
Y.
, and
Arslan
,
M. U.
,
2016
, “
Biomechanical Analysis of Titanium Fixation Plates and Screws in Mandibular Angle Fractures
,”
Nigerian J. Clin. Pract.
,
19
(
3
), pp.
386
–3
90
.10.4103/1119-3077.179292
You do not currently have access to this content.