Graphical Abstract Figure

IMU fixation for data collection

Graphical Abstract Figure

IMU fixation for data collection

Close modal

Abstract

In physiotherapy, joint kinematics is conventionally analyzed using the universal mechanical goniometer involving manual measurements and is only possible for static assessments of biomechanical parameters. The aim of the present research is to estimate and validate the knee joint kinematic parameters using the inertial sensor in a wearable device. A video motion analysis study is performed using “Kinovea” software for measurement validation. No statistical difference is observed in hypothesis testing (t-test, p > 0.7). The Pearson correlation coefficient (r2) and intraclass correlation coefficient (ICC) values are observed to be 0.99 and >0.99, respectively, for a 95% confidence interval in the inter-rater reliability test. Further, data normality, using the “Kolmogorov-Smirnov” test, and Bland–Altman analysis are performed to validate quantitative agreements. The standard error measurement confirms the reliability between the two systems. The developed device can be used as an alternative to the universal mechanical goniometer to measure joint kinematics in dynamic movements.

References

1.
Tao
,
W.
,
Liu
,
T.
,
Zheng
,
R.
, and
Feng
,
H.
,
2012
, “
Gait Analysis Using Wearable Sensors
,”
Sensors
,
12
(
2
), pp.
2255
2283
.10.3390/s120202255
2.
Lambrecht
,
S.
,
Harutyunyan
,
A.
,
Tanghe
,
K.
,
Afschrift
,
M.
,
De Schutter
,
J.
, and
Jonkers
,
I.
,
2017
, “
Real-Time Gait Event Detection Based on Kinematic Data Coupled to a Biomechanical Model
,”
Sensors
,
17
(
4
), p.
671
.10.3390/s17040671
3.
Patterson
,
M. R.
,
Delahunt
,
E.
,
Sweeney
,
K. T.
, and
Caulfield
,
B.
,
2014
, “
An Ambulatory Method of Identifying Anterior Cruciate Ligament Reconstructed Gait Patterns
,”
Sensors
,
14
(
1
), pp.
887
899
.10.3390/s140100887
4.
Pratt
,
K. A.
, and
Sigward
,
S. M.
,
2018
, “
Detection of Knee Power Deficits Following Anterior Cruciate Ligament Reconstruction Using Wearable Sensors
,”
J. Orthop. Sports Phys. Ther.
,
48
(
11
), pp.
895
902
.10.2519/jospt.2018.7995
5.
Pratt
,
K. A.
, and
Sigward
,
S. M.
,
2018
, “
Inertial Sensor Angular Velocities Reflect Dynamic Knee Loading During Single Limb Loading in Individuals Following Anterior Cruciate Ligament Reconstruction
,”
Sensors
,
18
(
10
), p.
3460
.10.3390/s18103460
6.
Leardini
,
A.
,
Biagi
,
F.
,
Merlo
,
A.
,
Belvedere
,
C.
, and
Benedetti
,
M. G.
,
2011
, “
Multi-Segment Trunk Kinematics During Locomotion and Elementary Exercises
,”
Clin. Biomech.
,
26
(
6
), pp.
562
571
.10.1016/j.clinbiomech.2011.01.015
7.
Yi
,
C.
,
Jiang
,
F.
,
Yang
,
C.
,
Chen
,
Z.
,
Ding
,
Z.
, and
Liu
,
J.
,
2021
, “
Reference Frame Unification of Imu-Based Joint Angle Estimation: The Experimental Investigation and a Novel Method
,”
Sensors
,
21
(
5
), p.
1813
.10.3390/s21051813
8.
Gajdosik
,
R. L.
, and
Bohannon
,
R. W.
,
1987
, “
Clinical Measurement of Range of Motion: Review of Goniometry Emphasizing Reliability and Validity
,”
Phys. Ther.
,
67
(
12
), pp.
1867
1872
.10.1093/ptj/67.12.1867
9.
Faisal
,
A. I.
,
Majumder
,
S.
,
Mondal
,
T.
,
Cowan
,
D.
,
Naseh
,
S.
, and
Deen
,
M. J.
,
2019
, “
Monitoring Methods of Human Body Joints: State-of-the-Art and Research Challenges
,”
Sensors
,
19
(
11
), p.
2629
.10.3390/s19112629
10.
Sers
,
R.
,
Forrester
,
S.
,
Moss
,
E.
,
Ward
,
S.
,
Ma
,
J.
, and
Zecca
,
M.
,
2020
, “
Validity of the Perception Neuron Inertial Motion Capture System for Upper Body Motion Analysis
,”
Measurement
,
149
, p.
107024
.10.1016/j.measurement.2019.107024
11.
Svensson
,
M.
,
Lind
,
V.
, and
Löfgren Harringe
,
M.
,
2019
, “
Measurement of Knee Joint Range of Motion With a Digital Goniometer: A Reliability Study
,”
Physiother. Res. Int.
,
24
(
2
), p.
e1765
.10.1002/pri.1765
12.
Ajdaroski
,
M.
,
Tadakala
,
R.
,
Nichols
,
L.
, and
Esquivel
,
A.
,
2020
, “
Validation of a Device to Measure Knee Joint Angles for a Dynamic Movement
,”
Sensors
,
20
(
6
), p.
1747
.10.3390/s20061747
13.
Seel
,
T.
,
Raisch
,
J.
, and
Schauer
,
T.
,
2014
, “
IMU-Based Joint Angle Measurement for Gait Analysis
,”
Sensors
,
14
(
4
), pp.
6891
6909
.10.3390/s140406891
14.
Bakhshi
,
S.
,
Mahoor
,
M. H.
, and
Davidson
,
B. S.
,
2011
, “
Development of a Body Joint Angle Measurement System Using IMU Sensors
,”
2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
Boston, MA
, Aug. 30–Sept. 3, pp.
6923
6926
.10.1109/IEMBS.2011.6091743
15.
Takeda
,
R.
,
Tadano
,
S.
,
Natorigawa
,
A.
,
Todoh
,
M.
, and
Yoshinari
,
S.
,
2009
, “
Gait Posture Estimation Using Wearable Acceleration and Gyro Sensors
,”
J. Biomech.
,
42
(
15
), pp.
2486
2494
.10.1016/j.jbiomech.2009.07.016
16.
Cho
,
Y.
,
Cho
,
H.
, and
Kyung
,
C.-M.
,
2020
, “
Accurate and Robust Walking Speed Estimation With Adaptive Regression Models for Wrist-Worn Devices
,”
IEEE Sens. J.
,
20
(
18
), pp.
10744
10755
.10.1109/JSEN.2020.2994616
17.
Bäcklund
,
T.
,
Öhberg
,
F.
,
Johansson
,
G.
,
Grip
,
H.
, and
Sundström
,
N.
,
2020
, “
Novel, Clinically Applicable Method to Measure Step-Width During the Swing Phase of Gait
,”
Physiol. Meas.
,
41
(
6
), p.
065005
.10.1088/1361-6579/ab95ed
18.
Patel
,
G.
,
Mullerpatan
,
R.
,
Agarwal
,
B.
,
Shetty
,
T.
,
Ojha
,
R.
,
Shaikh-Mohammed
,
J.
, and
Sujatha
,
S.
,
2022
, “
Validation of Wearable Inertial Sensor-Based Gait Analysis System for Measurement of Spatiotemporal Parameters and Lower Extremity Joint Kinematics in Sagittal Plane
,”
Proc. Inst. Mech. Eng., Part H
,
236
(
5
), pp.
686
696
.10.1177/09544119211072971
19.
Sabatini
,
A. M.
,
2011
, “
Estimating Three-Dimensional Orientation of Human Body Parts by Inertial/Magnetic Sensing
,”
Sensors
,
11
(
2
), pp.
1489
1525
.10.3390/s110201489
20.
de Almeida
,
T. F.
,
Morya
,
E.
,
Rodrigues
,
A. C.
, and
de Azevedo Dantas
,
A. F. O.
,
2021
, “
Development of a Low-Cost Open-Source Measurement System for Joint Angle Estimation
,”
Sensors
,
21
(
19
), p.
6477
.10.3390/s21196477
21.
McGinnis
,
R. S.
,
Patel
,
S.
,
Silva
,
I.
,
Mahadevan
,
N.
,
DiCristofaro
,
S.
,
Jortberg
,
E.
,
Ceruolo
,
M.
, and
Aranyosi
,
A.
,
2016
, “
Skin Mounted Accelerometer System for Measuring Knee Range of Motion
,” 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (
EMBC
),
Orlando, FL
, Aug. 16–20, pp.
5298
5302
.10.1109/EMBC.2016.7591923
22.
Mu
,
P.
,
Dai
,
M.
, and
Ma
,
X.
,
2021
, “
Application of Artificial Intelligence in Rehabilitation Assessment
,”
J. Phys.: Conf. Ser.
,
1802
, p.
32057
.10.1088/1742-6596/1802/3/032057
23.
Arai
,
T.
,
Obuchi
,
S.
,
Shiba
,
Y.
,
Omuro
,
K.
,
Inaba
,
Y.
, and
Kojima
,
M.
,
2012
, “
The Validity of an Assessment of Maximum Angular Velocity of Knee Extension (KE) Using a Gyroscope
,”
Arch. Gerontol. Geriatr.
,
54
(
2
), pp.
e175
e180
.10.1016/j.archger.2011.10.012
24.
Fong
,
D. T.-P.
, and
Chan
,
Y.-Y.
,
2010
, “
The Use of Wearable Inertial Motion Sensors in Human Lower Limb Biomechanics Studies: A Systematic Review
,”
Sensors
,
10
(
12
), pp.
11556
11565
.10.3390/s101211556
25.
Cloete
,
T.
, and
Scheffer
,
C.
,
2008
, “
Benchmarking of a Full-Body Inertial Motion Capture System for Clinical Gait Analysis
,”
30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
Vancouver, BC, Canada
, Aug. 20–25, pp.
4579
4582
.10.1109/IEMBS.2008.4650232
26.
Roetenberg
,
D.
,
Luinge
,
H. J.
,
Baten
,
C. T.
, and
Veltink
,
P. H.
,
2005
, “
Compensation of Magnetic Disturbances Improves Inertial and Magnetic Sensing of Human Body Segment Orientation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
13
(
3
), pp.
395
405
.10.1109/TNSRE.2005.847353
27.
Kendell
,
C. L.
, and
Lemaire
,
E. D.
,
2008
, “
Effect of Mobility Devices on Orientation Sensors That Contain Magnetometers
,”
CMBES Proc.
,
31
, pp.
957
962
.10.1682/jrrd.2008.09.0132
28.
Ananthakrishnan
,
N.
, and
Shanthi
,
A.
,
2012
, “
ICMR'S Ethical Guidelines for Biomedical Research on Human Participants: Need for Clarification
,”
Indian J. Med. Ethics
,
9
(
3
), pp.
207
209
.10.20529/IJME.2012.067
29.
Rezende
,
A.
,
Alves
,
C.
,
Marques
,
I.
,
Silva
,
M. A.
, and
Naves
,
E.
,
2018
, “
Polymer Optical Fiber Goniometer: A New Portable, Low Cost and Reliable Sensor for Joint Analysis
,”
Sensors
,
18
(
12
), p.
4293
.10.3390/s18124293
30.
Yang
,
S.
, and
Li
,
Q.
,
2012
, “
Inertial Sensor-Based Methods in Walking Speed Estimation: A Systematic Review
,”
Sensors
,
12
(
5
), pp.
6102
6116
.10.3390/s120506102
31.
Chinmilli
,
P.
,
Redkar
,
S.
,
Zhang
,
W.
, and
Sugar
,
T.
,
2017
, “
A Review on Wearable Inertial Tracking Based Human Gait Analysis and Control Strategies of Lower-Limb Exoskeletons
,”
Int. Rob. Autom. J.
,
3
(
7
), p.
00080
.10.15406/iratj.2017.03.00080
32.
van den Noort
,
J. C.
,
Scholtes
,
V. A.
, and
Harlaar
,
J.
,
2009
, “
Evaluation of Clinical Spasticity Assessment in Cerebral Palsy Using Inertial Sensors
,”
Gait Posture
,
30
(
2
), pp.
138
143
.10.1016/j.gaitpost.2009.05.011
33.
Laudanski
,
A.
,
Brouwer
,
B.
, and
Li
,
Q.
,
2013
, “
Measurement of Lower Limb Joint Kinematics Using Inertial Sensors During Stair Ascent and Descent in Healthy Older Adults and Stroke Survivors
,”
J. Healthcare Eng.
,
4
(
4
), pp.
555
576
.10.1260/2040-2295.4.4.555
34.
Ghio
,
A.
,
Escalante
,
S.
, and
Tarrillo
,
J.
,
2018
, “
Analysis of Moving Average Filter for IMU Measurements on an 8-Bit Microcontroller
,” IEEE XXV International Conference on Electronics, Electrical Engineering and Computing (
INTERCON
),
Lima, Peru
, Aug. 8–10, pp.
1
4
.10.1109/INTERCON.2018.8526391
35.
Elrahim
,
R. M. A.
,
Embaby
,
E. A.
,
Ali
,
M. F.
, and
Kamel
,
R. M.
,
2016
, “
Inter-Rater and Intra-Rater Reliability of Kinovea Software for Measurement of Shoulder Range of Motion
,”
Bull. Fac. Phys. Ther.
,
21
(
2
), pp.
80
87
.10.4103/1110-6611.196778
36.
Koo
,
T. K.
, and
Li
,
M. Y.
,
2016
, “
A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research
,”
J. Chiropr. Med.
,
15
(
2
), pp.
155
163
.10.1016/j.jcm.2016.02.012
37.
Giavarina
,
D.
,
2015
, “
Understanding Bland Altman Analysis
,”
Biochem. Med.
,
25
(
2
), pp.
141
151
.10.11613/BM.2015.015
38.
Bland
,
J. M.
, and
Altman
,
D. G.
,
2010
, “
Statistical Methods for Assessing Agreement Between Two Methods of Clinical Measurement
,”
Int. J. Nurs. Stud.
,
47
(
8
), pp.
931
936
.10.1016/j.ijnurstu.2009.10.001
39.
Kalra
,
A.
,
2017
, “
Decoding the Bland–Altman Plot: Basic Review
,”
J. Pract. Cardiovasc. Sci.
,
3
(
1
), p.
36
.10.4103/jpcs.jpcs_11_17
40.
Santos
,
T. M.
,
Barroso
,
M. F.
,
Ricco
,
R. A.
,
Nepomuceno
,
E. G.
,
Alvarenga
,
É. L.
,
Penoni
,
Á. C.
, and
Santos
,
A. F.
,
2019
, “
A Low-Cost Wireless System of Inertial Sensors to Postural Analysis During Human Movement
,”
Measurement
,
148
, p.
106933
.10.1016/j.measurement.2019.106933
41.
Bell
,
K. M.
,
Onyeukwu
,
C.
,
McClincy
,
M. P.
,
Allen
,
M.
,
Bechard
,
L.
,
Mukherjee
,
A.
,
Hartman
,
R. A.
,
Smith
,
C.
,
Lynch
,
A. D.
, and
Irrgang
,
J. J.
,
2019
, “
Verification of a Portable Motion Tracking System for Remote Management of Physical Rehabilitation of the Knee
,”
Sensors
,
19
(
5
), p.
1021
.10.3390/s19051021
42.
Huber
,
M.
,
Seitz
,
A. L.
,
Leeser
,
M.
, and
Sternad
,
D.
,
2015
, “
Validity and Reliability of Kinect Skeleton for Measuring Shoulder Joint Angles: A Feasibility Study
,”
Physiotherapy
,
101
(
4
), pp.
389
393
.10.1016/j.physio.2015.02.002
43.
Lim
,
C. C.
,
Affandi
,
M.
,
Basah
,
S. N.
, and
Din
,
M. Y.
,
2018
, “
Evaluating Lower Limb Joint Flexion by Computerized Visual Tracking System and Compared With Electrogoniometer and Universal Goniometer
,”
J. Telecommun. Electron. Comput. Eng.
,
10
(
1–4
), pp.
9
14
.https://jtec.utem.edu.my/jtec/article/view/3569
44.
Nicolas
,
R.
,
Emma
,
P.
,
Raphaël
,
Z.
,
Frédéric
,
C.
,
Luc
,
T.
,
Pascale
,
C.
,
Thelma
,
C.
, et al.,
2021
, “
Validity of an Instrumented Knee Brace Compared to 3D Motion Navigation: A Cadaveric Investigation
,”
Measurement
,
173
, p.
108590
.10.1016/j.measurement.2020.108590
You do not currently have access to this content.