Abstract

The importance of parathyroid glands (PGs) protection is increasingly recognized by thyroid surgeons in the field of minimally invasive video-assisted thyroidectomy (MIVAT). However, current techniques for intra-operative identification and vascularity assessment of the PGs are contentious and complex. This study presents the design and validation of a miniaturized device for fusion near-infrared autofluorescence (NIRAF) based on Raman spectroscopy and laser speckle contrast imaging (LSCI) via an image fusion algorithm for functional protection of PGs in the MIVAT. Our light source components include an integrated light emitting diode (LED) light source fiber, an NIRAF optical fiber, an acquisition optical fiber, and a laser speckle optical fiber in the endoscopic system to achieve identification and vascularity assessment of PGs using a single endoscopic probe. It has been validated in ex vivo tissue experiments that the fluorescence intensity detected by the device was equivalent to that of the marker indocyanine green (ICG) in visual images and superior to that of the thyroid and all other tissues in the neck. Based on clinical studies, MIVAT using functional fluorescence endoscopy, compared with the White light pattern group, the NIRAF combined with LSCI modality group increased the number of intra-operative confirmations of the PGs (P < 0.001), declined the decrease in parathyroid hormone (PTH) (P < 0.05) and calcium levels (P < 0.05) on the first postoperative day, and reduced the incidence of symptomatic hypocalcemia (P < 0.05). Our device may reduce the incidence of postoperative permanent hypoparathyroidism. Application of an miniaturized functional fluorescence endoscope for real-time and label-free PGs identification and vascularity assessment in MIVAT could be realized.

References

1.
Koimtzis
,
G. D.
,
Stefanopoulos
,
L.
,
Giannoulis
,
K.
, and
Papavramidis
,
T. S.
,
2021
, “
What Are the Real Rates of Temporary Hypoparathyroidism Following Thyroidectomy? It Is a Matter of Definition: A Systematic Review
,”
Endocrine.
, pp.
1
7
.10.1007/s12020-021-02663-8
2.
Papaspyrou
,
G.
,
Ferlito
,
A.
,
Silver
,
C. E.
,
Werner
,
J. A.
,
Genden
,
E.
, and
Sesterhenn
,
A. M.
,
2011
, “
Extracervical Approaches to Endoscopic Thyroid Surgery
,”
Surg. Endosc.
,
25
(
4
), pp.
995
1003
.10.1007/s00464-010-1341-2
3.
Tjahjono
,
R.
,
Nguyen
,
K.
,
Phung
,
D.
,
Riffat
,
F.
, and
Palme
,
C. E.
,
2021
, “
Methods of Identification of Parathyroid Glands in Thyroid Surgery: A Literature Review
,”
ANZ J. Surg.
,
91
(
9
), pp.
1711
1716
.10.1111/ans.17117
4.
Das
,
K.
,
Stone
,
N.
,
Kendall
,
C.
,
Fowler
,
C.
, and
Christie-Brown
,
J.
,
2006
, “
Raman Spectroscopy of Parathyroid Tissue Pathology
,”
Lasers Med. Sci.
,
21
(
4
), pp.
192
197
.10.1007/s10103-006-0397-7
5.
Paras
,
C.
,
Keller
,
M.
,
White
,
L.
,
Phay
,
J.
, and
Mahadevan-Jansen
,
A.
,
2011
, “
Near-Infrared Autofluorescence for the Detection of Parathyroid Glands
,”
J. Biomed. Opt.
, p.
067012
.10.1117/1.3583571
6.
Solórzano
,
C. C.
,
Thomas
,
G.
,
Baregamian
,
N.
, and
Mahadevan-Jansen
,
A.
,
2020
, “
Detecting the Near Infrared Autofluorescence of the Human Parathyroid
,”
Ann. Surg.
,
272
(
6
), pp.
973
985
.10.1097/SLA.0000000000003700
7.
Kim
,
Y.
,
Lee
,
H. C.
,
Kim
,
J.
,
Oh
,
E.
,
Yoo
,
J.
,
Ning
,
B.
,
Lee
,
S. Y.
, et al.,
2022
, “
A Coaxial Excitation, Dual-Red-Green-Blue/Near-Infrared Paired Imaging System Toward Computer-Aided Detection of Parathyroid Glands In Situ and Ex Vivo
,”
J. Biophotonics
,
15
(
8
), p.
e202200008
.10.1002/jbio.202200008
8.
Armitage
,
G. A.
,
Todd
,
K. G.
,
Shuaib
,
A.
, and
Winship
,
I. R.
,
2010
, “
Laser Speckle Contrast Imaging of Collateral Blood Flow During Acute Ischemic Stroke
,”
J. Cereb. Blood Flow Metab.
,
30
(
8
), pp.
1432
1436
.10.1038/jcbfm.2010.73
9.
Jeon
,
H.-J.
,
Qureshi
,
M. M.
,
Lee
,
S. Y.
,
Dilip Badadhe
,
J.
,
Cho
,
H.
, and
Chung
,
E.
,
2019
, “
Laser Speckle Decorrelation Time-Based Platelet Function Testing in Microfluidic System
,”
Sci. Rep.
,
9
(
1
), p.
16514
.10.1038/s41598-019-52953-5
10.
Pannu
,
A. Y.
,
O’Connor-Manson
,
M. R.
,
Wyld
,
L.
, and
Balasubramanian
,
S. P.
,
2023
, “
Near-Infrared Fluorescent Imaging for Parathyroid Identification and/or Preservation in Surgery for Primary Hyperparathyroidism
,”
Front. Endocrinol.
,
14
, p.
1240024
.10.3389/fendo.2023.1240024
11.
Lee
,
S. M.
,
Dedhia
,
P. H.
, and
Phay
,
J. E.
,
2024
, “
Heterogeneous Parathyroid Near-Infrared Autofluorescence Patterns Are Associated With Single Adenomas in Primary Hyperparathyroidism
,”
Head Neck
,
46
(
3
), pp.
592
598
.10.1002/hed.27599
12.
Merrill
,
A. L.
,
Sims
,
S. S.
,
Dedhia
,
P. H.
,
Rossfeld
,
K.
,
Lott Limbach
,
A.
,
Duh
,
Q.-Y.
, and
Phay
,
J. E.
,
2022
, “
Near-Infrared Autofluorescence Features of Parathyroid Carcinoma
,”
J. Endocr. Soc.
,
6
(
8
), p.
bvac090
.10.1210/jendso/bvac090
13.
Barbieri
,
D.
,
Indelicato
,
P.
,
Vinciguerra
,
A.
,
Di Marco
,
F.
,
Formenti
,
A. M.
,
Trimarchi
,
M.
, and
Bussi
,
M.
,
2021
, “
Autofluorescence and Indocyanine Green in Thyroid Surgery: A Systematic Review and Meta‐Analysis
,”
Laryngoscope
,
131
(
7
), pp.
1683
1692
.10.1002/lary.29297
14.
Mannoh
,
E. A.
,
Thomas
,
G.
,
Solórzano
,
C. C.
, and
Mahadevan-Jansen
,
A.
,
2017
, “
Intraoperative Assessment of Parathyroid Viability Using Laser Speckle Contrast Imaging
,”
Sci. Rep.
,
7
(
1
), p.
14798
.10.1038/s41598-017-14941-5
15.
Mannoh
,
E. A.
,
Thomas
,
G.
,
Baregamian
,
N.
,
Rohde
,
S. L.
,
Solórzano
,
C. C.
, and
Mahadevan-Jansen
,
A.
,
2021
, “
Assessing Intraoperative Laser Speckle Contrast Imaging of Parathyroid Glands in Relation to Total Thyroidectomy Patient Outcomes
,”
Thyroid
,
31
(
10
), pp.
1558
1565
.10.1089/thy.2021.0093
16.
Mannoh
,
E. A.
,
Parker
,
L. B.
,
Thomas
,
G.
,
Solórzano
,
C. C.
, and
Mahadevan‐Jansen
,
A.
,
2021
, “
Development of an Imaging Device for Label‐Free Parathyroid Gland Identification and Vascularity Assessment
,”
J. Biophotonics
,
14
(
6
), p.
e202100008
.10.1002/jbio.202100008
You do not currently have access to this content.