Abstract

Contact thermometry is the measurement of surface temperature using sensors in contact with the medium. These surface temperatures can be potential indicators of any abnormality possibly a tumor. This research work aims to present a computation method that makes use of contact thermometry to estimate the geometric center, size, and thermophysical properties of breast tumor. Wearable thermal sensors captured real-time surface temperature readings from discrete point locations. The continuous heat distribution over the domain was formulated using forward heat transfer analysis. The optimization method estimated tumor parameters of the breast, and a three-dimensional thermal model was developed from the estimated parameters. Laboratory experiments on breast phantoms were done to validate the estimation method. Furthermore, real-time temperature readings of human subjects were recorded, and the estimated location and size were then compared with the mammogram results. It was found that the estimated two-dimensional geometric center and the size in diameter of the tumor closely match with the mammogram results. Further, the thermophysical properties estimated using the proposed method had a higher order in subjects having a tumor making it a tool for breast cancer screening.

References

1.
American Cancer Society
, 2021, “
Breast Cancer Facts & Figs 2019–2020
,” American Cancer Society, Atlanta, GA, accessed Jan. 2, 2021, https://www.cancer.org/research/cancer-facts-statistics/breast-cancer-facts-figures.html
2.
World Health Organization (WHO),
2021
, “
Breast Cancer
”, World Health Organization (WHO), Geneva, Switzerland, accessed Jan. 4, 2021, https://www.who.int/cancer/prevention/diagnosis-screening/breast-cancer/en/
3.
National Institute of Health (NIH),
2021
, “
Cancer Stat Facts: Breast Cancer
”, National Institute of Health (NIH), Bethesda, MD, accessed Jan. 4, 2021, https://seer.cancer.gov/statfacts/html/breast.html
4.
Lahiri
,
B. B.
,
Bagavathiappan
,
S.
,
Jayakumar
,
T.
, and
Philip
,
J.
,
2012
, “
Medical Applications of Infrared Thermography: A Review
,”
Infrared Phys. Technol.
,
55
(
4
), pp.
221
235
.10.1016/j.infrared.2012.03.007
5.
James
,
C. A.
,
Richardson
,
A. J.
,
Watt
,
P. W.
, and
Maxwell
,
N. S.
,
2014
, “
Reliability and Validity of Skin Temperature Measurement by Telemetry Thermistors and a Thermal Camera During Exercise in the Heat
,”
J. Therm. Biol.
,
45
(
2014
), pp.
141
149
.10.1016/j.jtherbio.2014.08.010
6.
Fadhillah
,
U. D.
,
Afikah
,
Z. A.
,
Safiee
,
N. E.
,
Asnida
,
A. W.
,
Rafiq
,
A. K.
, and
Ramlee
,
M. H.
,
2018
, “
Development of a Low-Cost Wearable Breast Cancer Detection Device
,” Second International Conference on BioSignal Analysis, Processing and Systems (
ICBAPS
),
Kuching, Malaysia, July 24–26, pp.
41
46
.10.1109/ICBAPS.2018.8527419a
7.
Pavithra
,
P. R.
,
Ravichandran
,
K. S.
,
Sekar
,
K. R.
, and
Manikandan
,
R.
,
2018
, “
The Effect of Thermography on Breast Cancer Detection
,”
Syst. Rev. Pharm.
,
9
(
1
), pp.
10
16
.10.5530/srp.2018.1.3
8.
Kandlikar
,
S. G.
,
Perez-Raya
,
I.
,
Raghupathi
,
P. A.
,
Gonzalez-Hernandez
,
J.-L.
,
Dabydeen
,
D.
,
Medeiros
,
L.
, and
Phatak
,
P.
,
2017
, “
Infrared Imaging Technology for Breast Cancer Detection–Current Status, Protocols and New Directions
,”
Int. J. Heat Mass Transfer
,
108
(
2017
), pp.
2303
2320
.10.1016/j.ijheatmasstransfer.2017.01.086
9.
Bowman
,
H. F.
,
1985
, “
Estimation of Tissue Blood Flow
,” A. Shitzer and R. C. Eberhart, eds., Heat Transfer in Medicine and Biology: Analysis and Applications, Vol. 1,
Plenum Press, New York, pp.
193
230
.
10.
Kennedy
,
D. A.
,
Lee
,
T.
, and
Seely
,
D.
,
2009
, “
A Comparative Review of Thermography as a Breast Cancer Screening Technique
,”
Integr. Cancer Therap.
,
8
(
1
), pp.
9
16
.10.1177/1534735408326171
11.
Gautherie
,
M.
,
1980
, “
Thermopathology of Breast Cancer: Measurement and Analysis of In Vivo Temperature and Blood Flow
,”
Ann. New York Acad. Sci.
,
335
(
1 Thermal Chara
), pp.
383
415
.10.1111/j.1749-6632.1980.tb50764.x
12.
Chen
,
M. M.
,
Pedersen
,
C. O.
, and
Chato
,
J. C.
,
1977
, “
On the Feasibility of Obtaining Three-Dimensional Information From Thermographic Measurements
,”
ASME. J Biomech Eng.
99
(
2
), pp.
58
64
.10.1115/1.3426274
13.
Pennes
,
H. H.
,
1948
, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,”
J. Appl. Physiol.
,
1
(
2
), pp.
93
122
.10.1152/jappl.1948.1.2.93
14.
Das
,
K.
, and
Mishra
,
S. C.
,
2013
, “
Estimation of Tumor Characteristics in a Breast Tissue With Known Skin Surface Temperature
,”
J. Thermal Biol.
,
38
(
6
), pp.
311
317
.10.1016/j.jtherbio.2013.04.001
15.
Bahador
,
M.
,
Keshtkar
,
M. M.
, and
Zariee
,
A.
,
2018
, “
Numerical and Experimental Investigation on the Breast Cancer Tumour Parameters by Inverse Heat Transfer Method Using Genetic Algorithm and Image Processing
,”
Sādhanā
,
43
(
9
), pp.
1
10
.10.1007/s12046-018-0900-4
16.
Agnelli
,
J. P.
,
Barrea
,
A. A.
, and
Turner
,
C. V.
,
2011
, “
Tumor Location and Parameter Estimation by Thermography
,”
Math. Comput. Modell.
,
53
(
7–8
), pp.
1527
1534
.10.1016/j.mcm.2010.04.003
17.
Ozisik
,
M. N.
,
Orlande
,
H. R. B.
, and
Kassab
,
A. J.
,
2002
, “
Inverse Heat Transfer: Fundamentals and Applications
,”
ASME Appl. Mech. Rev.
,
55
(
1
), pp.
B18
B19
.10.1115/1.1445337
18.
Schweiger
,
M.
,
Arridge
,
S. R.
, and
Nissilä
,
I.
,
2005
, “
Gauss–Newton Method for Image Reconstruction in Diffuse Optical Tomography
,”
Phys. Med. Biol.
,
50
(
10
), pp.
2365
2386
.10.1088/0031-9155/50/10/013
19.
Das
,
K.
, and
Mishra
,
S. C.
,
2015
, “
Simultaneous Estimation of Size, Radial and Angular Locations of a Malignant Tumor in a 3-D Human Breast–a Numerical Study
,”
J. Thermal Biol.
,
52
, pp.
147
156
.10.1016/j.jtherbio.2015.07.001
20.
Saniei
,
E.
,
Setayeshi
,
S.
,
Akbari
,
M. E.
, and
Navid
,
M.
,
2016
, “
Parameter Estimation of Breast Tumour Using Dynamic Neural Network From Thermal Pattern
,”
J. Adv. Res.
,
7
(
6
), pp.
1045
1055
.10.1016/j.jare.2016.05.005
21.
Hatwar
,
R.
, and
Herman
,
C.
,
2017
, “
Inverse Method for Quantitative Characterization of Breast Tumors From Surface Temperature Data
,”
Int. J. Hyperthermia
,
33
(
7
), pp.
1
757
.10.1080/02656736.2017.1306758
22.
Mohebbi
,
F.
, and
Sellier
,
M.
,
2016
, “
Parameter Estimation in Heat Conduction Using a Two-Dimensional Inverse Analysis
,”
Int. J. Comput. Methods Eng. Sci. Mech.
,
17
(
4
), pp.
274
287
.10.1080/15502287.2016.1204034
23.
Bousselham
,
A.
,
Bouattane
,
O.
,
Youssfi
,
M.
, and
Raihani
,
A.
,
2018
, “
Brain Tumor Temperature Effect Extraction From MRI Imaging Using Bioheat Equation
,”
Procedia Comput. Sci.
,
127
, pp.
336
343
.10.1016/j.procs.2018.01.130
24.
Mital
,
M.
, and
Pidaparti
,
R. M.
,
2008
, “
Breast Tumor Simulation and Parameters Estimation Using Evolutionary Algorithms
,”
Modell. Simul. Eng.
,
2008
, pp.
1
6
.10.1155/2008/756436
25.
Lozano
,
A.
,
Hayes
,
J. C.
,
Compton
,
L. M.
,
Azarnoosh
,
J.
, and
Hassanipour
,
F.
,
2020
, “
Determining the Thermal Characteristics of Breast Cancer Based on High-Resolution Infrared Imaging, 3D Breast Scans, and Magnetic Resonance Imaging
,”
Sci. Rep.
,
10
(
1
), pp.
1
14
.10.1038/s41598-020-66926-6
26.
Porter
,
E.
,
Bahrami
,
H.
,
Santorelli
,
A.
,
Gosselin
,
B.
,
Rusch
,
L. A.
, and
Popović
,
M.
,
2016
, “
A Wearable Microwave Antenna Array for Time-Domain Breast Tumor Screening
,”
IEEE Trans. Med. Imaging
,
35
(
6
), pp.
1501
1509
.10.1109/TMI.2016.2518489
27.
Majeed
,
B.
,
Iqbal
,
H. T.
,
Khan
,
U.
, and
Altaf
,
M. A. B.
,
2018
, “
A Portable Thermogram Based Non-Contact Non-Invasive Early Breast-Cancer Screening Device
,” IEEE Biomedical Circuits and Systems Conference (
BioCAS
),
Cleveland, OH, Oct. 17–19, pp.
1
4
.10.1109/BIOCAS.2018.8584762
28.
Ng
,
E. Y. K.
,
Acharya
,
U. R.
,
Keith
,
L. G.
, and
Lockwood
,
S.
,
2007
, “
Detection and Differentiation of Breast Cancer Using Neural Classifiers With First Warning Thermal Sensors
,”
Inf. Sci.
,
177
(
20
), pp.
4526
4538
.10.1016/j.ins.2007.03.027
29.
Sudharsan
,
N. M.
,
Ng
,
E. Y. K.
, and
Teh
,
S. L.
,
1999
, “
Surface Temperature Distribution of a Breast With and Without Tumour
,”
Comput. Methods Biomech. Biomed. Eng.
,
2
(
3
), pp.
187
19
.10.1080/10255849908907987
30.
Ng
,
E. Y. K.
, and
Sudharsan
,
N. M.
,
2001
, “
An Improved 3-D Direct Numerical Modelling and Thermal Analysis of a Female Breast With Tumour
,”
Proc. Inst. Mech. Eng. Part H, J. Eng. Med.
,
215
(
1
), pp.
25
37
.10.1243/0954411011533508
31.
Perez
,
C. A.
, and
Bradys
,
L. W.
,
2016
,
Principle and Practice of Radiation and Oncology
, 6th ed.,
Wolters Kluwer Health/Lippincott Williams & Wilkins
,
Philadelphia, PA
.
32.
González
,
F. J.
,
2011
, “
Non-Invasive Estimation of the Metabolic Heat Production of Breast Tumors Using Digital Infrared Imaging
,”
Quant. InfraRed Thermogr. J.
,
8
(
2
), pp.
139
148
.10.3166/qirt.8.139-148
33.
Melo
,
A. R.
,
Loureiro
,
M. M. S.
, and
Loureiro
,
F.
,
2017
, “
Blood Perfusion Parameter Estimation in Tumors by Means of a Genetic Algorithm
,”
Procedia Comput. Sci.
,
108
(
2017
), pp.
1384
1393
.10.1016/j.procs.2017.05.225
34.
Osman
,
M.
, and
Afify
,
E.
,
1984
, “
Thermal Modeling of the Normal Woman's Breast
,”
ASME J. Biomech. Eng.
,
106
(
2
), pp.
123
–1
30
.10.1115/1.3138468
35.
Osman
,
M. M.
, and
Afify
,
E. M.
,
1988
, “
Thermal Modeling of the Malignant Woman's Breast
,”
ASME J. Biomech. Eng.
,
110
(
4
), pp.
269
276
.10.1115/1.3108441
36.
Fang
,
M.
,
Xu
,
F.
,
Zhu
,
Z.
,
Jiang
,
L.
, and
Geng
,
X.
,
2014
, “
On the Convergence of Levenberg-Marquardt Method for Solving Nonlinear Systems
,”
Bio-Inspired Comput.-Theories Appl.
,
472
, pp.
117
122
.10.1007/978-3-662-45049-9
37.
Cui
,
M.
,
Zhao
,
Y.
,
Xu
,
B.
, and
Gao
,
X. W.
,
2017
, “
A New Approach for Determining Damping Factors in Levenberg-Marquardt Algorithm for Solving an Inverse Heat Conduction Problem
,”
Int. J. Heat Mass Transfer
,
107
(
2017
), pp.
747
754
.10.1016/j.ijheatmasstransfer.2016.11.101
38.
Arathy
,
K.
,
Ansari
,
S.
, and
Malini
,
K. A.
,
2020
, “
High Reliability Thermistor Probes for Early Detection of Breast Cancer Using Skin Contact Thermometry With Thermal Imaging
,”
Mater. Exp.
,
10
(
5
), pp.
620
628
.10.1166/mex.2020.1682
39.
Eberhart
,
R. C.
,
Shitzer
,
A.
, and
Hernandez
,
E. J.
,
1980
, “
Thermal Dilution Methods: Estimation of Tissue Blood Flow and Metabolism
,”
Ann. New York Acad. Sci.
,
335
(
1 Thermal Chara
), pp.
107
132
.10.1111/j.1749-6632.1980.tb50740.x
40.
Ramachandran
,
P.
, and
Varoquaux
,
G.
,
2011
, “
Mayavi: 3D Visualization of Scientific Data
,”
IEEE Comput. Sci. Eng.
,
13
(
2
), pp.
40
51
.10.1109/MCSE.2011.35
41.
Muniz
,
P. R.
,
de Araújo Kalid
,
R.
,
Cani
,
S. P.
, and
da Silva Magalhães
,
R.
,
2014
, “
Handy Method to Estimate Uncertainty of Temperature Measurement by Infrared Thermography
,”
Opt. Eng.
,
53
(
7
), p.
074101
.10.1117/1.OE.53.7.074101
You do not currently have access to this content.