Abstract

Adding redundant passive joints to a robotic arm is an effective way to make the robot overcome the inherent incision constraint of minimally invasive surgery (MIS). However, due to the limited motion accuracy, it is difficult to realize full-dimensional intuitive motion based on traditional multi-axis coordinated control technology in this kind of MIS robots. To solve this problem, a separated position and orientation mapping strategy for MIS robot with redundant passive joints is proposed in the paper. The position and orientation mapping of the strategy are realized by coordinate motion control and joint direct control technique, respectively. To realize the intuitive motion under this condition, an inverse motion mapping method is further proposed. Compared with the existing mapping strategy, the proposed strategy is much more compact as the orientation mapping is greatly simplified. A large number of in vivo trials based on the newly developed prototype have been conducted and results fully verify the effectiveness of the proposed strategy.

References

1.
Dalvand
,
M. M.
, and
Shirinzadeh
,
B.
,
2013
, “
Motion Control Analysis of a Parallel Robot Assisted Minimally Invasive Surgery/Microsurgery System (PRAMiSS,” )
,”
Rob. Comput. Integr. Manuf.
,
29
(
2
), pp.
318
327
.10.1016/j.rcim.2012.09.003
2.
Dai
,
J. S.
,
2010
, “
Editorial: Surgical Robotics and Its Development and Progress
,”
Robotica
,
28
(
2
), pp.
161
161
.10.1017/S0263574709990877
3.
Guthart
,
G. S.
, and
Salisbury
,
J. K.
,
2000
, “
The intuitiveTM Telesurgery System: Overview and Application
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
San Francisco, CA
,
Apr. 24–28
, pp.
618
621
.10.1109/ROBOT.2000.844121
4.
Gomes
,
P.
,
2011
, “
Surgical Robotics: Reviewing the Past, Analysing the Present, Imagining the Future
,”
Rob. Comput. Integr. Manuf.
,
27
(
2
), pp.
261
266
.10.1016/j.rcim.2010.06.009
5.
Wang
,
Z. Y.
,
Zi
,
B.
,
Ding
,
H. F.
,
You
,
W.
, and
Yu
,
L. T.
,
2018
, “
Hybrid Grey Prediction Model-Based Autotracking Algorithm for the Laparoscopic Visual Window of Surgical Robot
,”
Mech. Mach. Theory
,
123
, pp.
107
123
.10.1016/j.mechmachtheory.2018.01.015
6.
Cheng
,
L. B.
,
Sharifi
,
M.
, and
Tavakoli
,
M.
,
2018
, “
Towards Robot-Assisted Anchor Deployment in Beating-Heart Mitral Valve Surgery
,”
Int. J. Med. Rob. Comput. Assist. Surg.
,
14
(
3
), p.
1900
.10.1002/rcs.1900
7.
Cheng
,
L.
, and
Tavakoli
,
M.
,
2018
, “
Ultrasound Image Guidance and Robot Impedance Control for Beating-Heart Surgery
,”
Control Eng. Pract.
,
81
, pp.
9
17
.10.1016/j.conengprac.2018.08.017
8.
Petroni
,
G.
,
Niccolini
,
M.
,
Menciassi
,
A.
,
Dario
,
P.
, and
Cuschieri
,
A.
,
2013
, “
A Novel Intracorporeal Assembling Robotic System for Single-Port Laparoscopic Surgery
,”
Surg. Endosc.
,
27
(
2
), pp.
665
670
.10.1007/s00464-012-2453-7
9.
Petroni
,
G.
,
Niccolini
,
M.
,
Caccavaro
,
S.
,
Quaglia
,
C.
,
Menciassi
,
A.
,
Schostek
,
S.
,
Basili
,
G.
,
Goletti
,
O.
,
Schurr
,
M.
, and
Dario
,
P.
,
2013
, “
A Novel Robotic System for Single-Port Laparoscopic Surgery: Preliminary Experience
,”
Proceedings of Annual Meeting of the Society-of-American-Gastrointestinal-and-Endoscopic-Surgeons
,
San Diego, CA
,
Mar. 6–10
, pp.
1932
1937
.10.1007/s00464-012-2690-9
10.
Niccolini
,
M.
,
Petroni
,
G.
,
Menciassi
,
A.
, and
Dario
,
P.
,
2012
, “
Real-Time Control Architecture of a Novel Single-Port Laparoscopy bimaNual roboT (SPRINT)
,”
Proceedings of the IEEE International Conference on Robotics and Automation
(
ICRA
),
Saint Paul, MN
,
May 14–18
, pp.
3395
–3
400
.10.1109/ICRA.2012.6224984
11.
Tomiki
,
Y.
,
Marinho
,
M. M.
,
Kurose
,
Y.
,
Kurose
,
Y.
,
Harada
,
K.
, and
Mitsuishi
,
M.
,
2017
, “
On the Use of General-Purpose Serial-Link Manipulators in Eye Surgery
,”
Proceedings of the IEEE International Conference on Ubiquitous Robots and Ambient Intelligence
,
Jeju, South Korea
,
June 28–July 1
, pp.
540
541
.10.1109/URAI.2017.7992663
12.
Marinho
,
M. M.
,
Adorno
,
B. V.
,
Harada
,
K.
,
Deie
,
K.
,
Deguet
,
A.
,
Kazanzides
,
P.
,
Taylor
,
R. H.
, and
Mitsuishi
,
M.
,
2019
, “
A Unified Framework for the Teleoperation of Surgical Robots in Constrained Workspaces
,”
Proceedings of the IEEE International Conference on Robotics and Automation
(
ICRA
),
Montreal, QC, Canada
,
May 20–24
, pp.
2721
2727
.10.1109/ICRA.2019.8794363
13.
Marinho
,
M. M.
,
Harada
,
K.
,
Morita
,
A.
, and
Mitsuishi
,
M.
,
2019
, “
SmartArm: Integration and Validation of a Versatile Surgical Robotic System for Constrained Workspaces
,”
Int. J. Med. Rob. Comput. Assist. Surg.
,
16
(
2
), p.
2053
.10.1002/rcs.2053
14.
Kim
,
U.
,
Lee
,
D. H.
,
Kim
,
Y. B.
,
Seok
,
D. Y.
,
So
,
J.
, and
Choi
,
H. R.
,
2017
, “
S-Surge: Novel Portable Surgical Robot With Multiaxis Force-Sensing Capability for Minimally Invasive Surgery
,”
IEEE/ASME Trans. Mechatronics
,
22
(
4
), pp.
1717
1727
.10.1109/TMECH.2017.2696965
15.
Kim
,
U.
,
Kim
,
Y. B.
,
So
,
J.
,
Seok
,
D. Y.
, and
Choi
,
H. R.
,
2018
, “
Sensorized Surgical Forceps for Robotic-Assisted Minimally Invasive Surgery
,”
IEEE T. Ind. Electron.
,
65
(
12
), pp.
9604
9613
.10.1109/TIE.2018.2821626
16.
Lee
,
D. H.
,
Kim
,
U.
,
Gulrez
,
T.
,
Yoon
,
W. J.
,
Hannaford
,
B.
, and
Choi
,
H. R.
,
2015
, “
A Laparoscopic Grasping Tool With Force Sensing Capability
,”
IEEE/ASME Trans. Mechatronics.
,
21
(
1
), pp.
130
141
.10.1109/TMECH.2015.2442591
17.
Choi
,
J.
,
Park
,
J. W.
,
Kim
,
D. J.
,
Shin
,
J.
,
Park
,
C. Y.
,
Lee
,
J. C.
, and
Jo
,
Y. H.
,
2012
, “
Lapabot: A Compact Telesurgical Robot System for Minimally Invasive Surgery: Part I—System Description
,”
Minim. Invasive. Ther. Allied. Technol.
,
21
(
3
), pp.
188
194
.10.3109/13645706.2011.579979
18.
Park
,
J. W.
,
Lee
,
D. H.
,
Kim
,
Y. W.
,
Lee
,
B. H.
, and
Jo
,
Y. H.
,
2012
, “
Lapabot: A Compact Telesurgical Robot System for Minimally Invasive Surgery: Part II—Telesurgery Evaluation
,”
Minim. Invasive. Ther. Allied. Technol.
,
21
(
3
), pp.
195
200
.10.3109/13645706.2011.579978
19.
Jang
,
I.
,
Park
,
S.
,
Park
,
H.
, and
Jo
,
Y.
,
2017
, “
Nonrestraint Master System for Surgical Robots
,”
J. Mech. Med. Biol.
,
17
(
03
), p.
1750051
.10.1142/S0219519417500518
20.
Li
,
W.
,
Cheng
,
T.
,
Ye
,
M.
,
Ng
,
C.
,
Chiu
,
P.
, and
Li
,
Z.
,
2020
, “
Kinematic Modeling and Visual Servo Control of a Soft-Bodied Magnetic Anchored and Guided Endoscope
,”
IEEE-ASME Trans. Mechatronics
,
25
(
3
), pp.
1531
1542
.10.1109/TMECH.2020.2978538
21.
Cheng
,
T.
,
Ng
,
C.
,
Chiu
,
P.
, and
Li
,
Z.
,
2017
, “
Design and Prototyping of a Soft Magnetic Anchored and Guidance Endoscope System
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
),
Vancouver, BC, Canada
,
Sept. 24–28
, pp.
2902
2908
.10.1109/IROS.2017.8206122
22.
Légner
,
A.
,
Diana
,
M.
,
Halvax
,
P.
,
Liu
,
Y. Y.
,
Zorn
,
L.
,
Zanne
,
P.
,
Nageotte
,
F.
,
Mathelin
,
M. D.
,
Dallemagne
,
B.
, and
Marescaux
,
J.
,
2017
, “
Endoluminal Surgical Triangulation 2.0: A New Flexible Surgical Robot. Preliminary Pre-Clinical Results With Colonic Submucosal Dissection
,”
Int. J. Med. Robot. Comput. Assist. Surg.
,
13
(
3
), p.
1819
.10.1002/rcs.1819
23.
Ranzani
,
T.
,
Russo
,
S.
,
Schwab
,
F.
,
Walsh
,
C. J.
, and
Wood
,
R. J.
,
2017
, “
Deployable Stabilization Mechanisms for Endoscopic Procedures
,”
Proceedings of IEEE International Conference on Robotics and Automation
(
ICRA
),
Singapore
,
May 29–June 3
, pp.
1125
1131
.10.1109/ICRA.2017.7989134
24.
Evers
,
L.
,
Bouvy
,
N.
,
Branje
,
D.
, and
Peeters
,
A.
,
2017
, “
Single-Incision Laparoscopic Cholecystectomy Versus Conventional Four-Port Laparoscopic Cholecystectomy: A Systematic Review and Meta-Analysis
,”
Surg. Endosc.
,
31
(
9
), pp.
3437
3448
.10.1007/s00464-016-5381-0
25.
Shen
,
T.
,
Akbarisamani
,
S.
,
Nelson
,
C.
, and
Oleynikov
,
D.
,
2015
, “
Preliminary Validation Testing of a Multifunctional NOTES Robot
,”
ASME J. Med. Devices
,
9
(
3
), p. 030930.10.1115/1.4030603
26.
Gifari
,
M. W.
,
Naghibi
,
H.
,
Stramigioli
,
S.
, and
Abayazid
,
M.
,
2019
, “
A Review on Recent Advances in Soft Surgical Robots for Endoscopic Applications
,”
Int. J. Med. Robot. Comput. Assist. Surg.
,
15
(
5
), p.
2010
.10.1002/rcs.2010
27.
Schlenk
,
C.
,
Bahls
,
T.
,
Tarassenko
,
S.
,
Klodmann
,
J.
,
Bihler
,
M.
, and
Wuesthoff
,
T.
,
2018
, “
Robot Integrated User Interface for Physical Interaction With the DLR MIRO in Versatile Medical Procedures
,”
J. Med. Robot. Res.
,
03
(
02
), p.
1840006
.10.1142/S2424905X18400068
28.
Ghodoussi
,
M.
,
Butner
,
S. E.
, and
Wang
,
Y.
,
2002
, “
Robotic Surgery-the Transatlantic Case
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Washington, DC
,
May 11–15
, pp.
1882
1888
.10.1109/ROBOT.2002.1014815
29.
Nisar
,
S.
,
Endo
,
T.
, and
Matsuno
,
F.
,
2018
, “
Design and Optimization of a 2-Degree-of-Freedom Planar Remote Center of Motion Mechanism for Surgical Manipulators With Smaller Footprint
,”
Mech. Mach. Theory
,
129
, pp.
148
161
.10.1016/j.mechmachtheory.2018.07.020
30.
Kong
,
K.
,
Li
,
J.
,
Zhang
,
H.
,
Li
,
J.
, and
Wang
,
S.
,
2016
, “
Kinematic Design of a Generalized Double Parallelogram Based Remote Center-of-Motion Mechanism for Minimally Invasive Surgical Robot
,”
ASME J. Med. Devices
,
10
(
4
), p.
041006
.10.1115/1.4033668
31.
Toh
,
J. W. T.
, and
Kim
,
S. H.
,
2018
, “
Port Positioning and Docking for Single-Stage Totally Robotic Dissection for Rectal Cancer Surgery With the Si and Xi Da Vinci Surgical System
,”
J. Robot. Surg.
,
12
(
3
), pp.
545
548
.10.1007/s11701-017-0760-7
32.
Sung
,
G. T.
, and
Gill
,
I. S.
,
2001
, “
Robotic Laparoscopic Surgery: A Comparison of the da Vinci and Zeus Systems
,”
Urology
,
58
(
6
), pp.
893
898
.10.1016/S0090-4295(01)01423-6
33.
Ji
,
W. Q.
,
Qiu
,
J. B.
, and
Karimi
,
H. R.
,
2020
, “
Fuzzy-Model-Based Output Feedback Sliding-Mode Control for Discrete-Time Uncertain Nonlinear Systems
,”
IEEE Trans. Fuzzy Syst.
,
28
(
8
), pp.
1519
1530
.10.1109/TFUZZ.2019.2917127
34.
Wang
,
Y.
,
Karimi
,
H. R.
,
Lam
,
H. K.
, and
Yan
,
H. C.
,
2020
, “
Fuzzy Output Tracking Control and Filtering for Nonlinear Discrete-Time Descriptor Systems Under Unreliable Communication Links
,”
IEEE Trans. Cybern.
,
50
(
6
), pp.
2369
2379
.10.1109/TCYB.2019.2920709
35.
Su
,
H.
,
Hu
,
Y.
,
Karimi
,
H. R.
,
Knoll
,
A.
,
Ferrigno
,
G.
, and
Momi
,
E. D.
,
2020
, “
Improved Recurrent Neural Network-Based Manipulator Control With Remote Center of Motion Constraints: Experimental Results
,”
Neural Networks
,
131
, pp.
291
299
.10.1016/j.neunet.2020.07.033
36.
Su
,
H.
,
Qi
,
W.
,
Yang
,
C.
,
Sandoval
,
J.
,
Ferrigno
,
G.
, and
Momi
,
E. D.
,
2020
, “
Deep Neural Network Approach in Robot Tool Dynamics Identification for Bilateral Teleoperation
,”
IEEE Robot. Autom. Let
,.,
5
(
2
), pp.
2943
2949
.10.1109/LRA.2020.2974445
37.
Yi
,
B.
,
Wang
,
G.
,
Li
,
J.
,
Jiang
,
J.
,
Son
,
Z.
,
Su
,
H.
, and
Zhu
,
S.
,
2016
, “
The First Clinical Use of Domestically Produced Chinese Minimally Invasive Surgical Robot System “Micro Hand S
,”
Surg. Endosc.
,
30
(
6
), pp.
2649
2655
.10.1007/s00464-015-4506-1
38.
Su
,
H.
,
Li
,
J.
,
Kong
,
K.
, and
Li
,
J.
,
2018
, “
Development and Experiment of the Internet-Based Telesurgery With MicroHand Robot
,”
Adv. Mech. Eng.
,
10
(
2
), pp.
1
10
.10.1177/1687814018761921
You do not currently have access to this content.