This paper deals with the kinematic optimization of a five degrees-of-freedom (DoFs) spatial parallel mechanism with three kinematic chains. Inspired by the structure of the icosahedron, the base of the discussed mechanism has been designed into a compact and light-weight frame. Due to the potential advantages, this mechanism is used as a movable plug-in module in a multi-axis machine center to process large-scale parts with rotary contour surfaces. To derive its optimal parameters, kinematic optimization based on the motion/force transmissibility is carried out. The parameter design space (PDS) is generated first. Then, the performance evaluation index (i.e., local transmission index (LTI)) is derived sequentially. On this basis, the good transmission positioning workspace (GTPW) for a given orientation is defined by constraining the value of LTI with a certain metric. Thereafter, the atlases of the GTPW and the optimal region satisfying the workspace constraint are derived in the PDS. Within this region, a set of optimal parameters without dimension are selected. Consequently, the cuboid workspaces within GTPWs are identified in detail. By using the ratio between required workspace in application and the derived cuboid workspaces, optimal geometric parameters with dimension are derived. Workspace analysis results show that, for an arbitrary orientation between the vertical and horizontal directions, there is always a cuboid workspace within GTPW larger than required workspace. In addition, the orientational capability of the mechanism can reach more than 90 deg, and the flexible 2DoFs rotations can also be realized. The work in this paper is very helpful to the development of a mobile machining module.

References

1.
Li
,
Y. G.
,
Liu
,
H. T.
,
Zhao
,
X. M.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
2010
, “
Design of a 3-DOF PKM Module for Large Structural Component Machining
,”
Mech. Mach. Theory
,
45
(
6
), pp.
941
954
.
2.
Rahman
,
T.
,
Krouglicof
,
N.
, and
Lye
,
L.
,
2012
, “
Kinematic Synthesis of Nonspherical Orientation Manipulators: Maximization of Dexterous Regular Workspace by Multiple Response Optimization
,”
ASME J. Mech. Des.
,
134
(
7
), p.
071009
.
3.
Xie
,
F. G.
,
Liu
,
X. J.
, and
Li
,
T. M.
,
2013
, “
A Comparison Study on the Orientation Capability and Parasitic Motions of Two Novel Articulated Tool Heads With Parallel Kinematics
,”
Adv. Mech. Eng.
,
2013
, p.
249103
.
4.
Gezgin
,
E.
, and
Ozdemir
,
S.
,
2011
, “
Classification of Manipulators of the Same Origin by Virtue of Compactness and Complexity
,”
Mech. Mach. Theory
,
46
(
10
), pp.
1425
1433
.
5.
Gosselin
,
C.
, and
Schreiber
,
L.
,
2016
, “
Kinematically Redundant Spatial Parallel Mechanisms for Singularity Avoidance and Large Orientational Workspace
,”
IEEE Trans. Rob.
,
32
(
2
), pp.
286
300
.
6.
Gan
,
D. M.
,
Dai
,
J. S.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2013
, “
Unified Kinematics and Singularity Analysis of a Metamorphic Parallel Mechanism With Bifurcated Motion
,”
ASME J. Mech. Rob.
,
5
(
3
), p.
031004
.
7.
Li
,
Q.
,
Chai
,
X.
, and
Xiang
,
J.
,
2016
, “
Mobility Analysis of Limited-Degrees-of-Freedom Parallel Mechanisms in the Framework of Geometric Algebra
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041005
.
8.
Yu
,
J. J.
,
Dong
,
X.
,
Pei
,
X.
, and
Kong
,
X. W.
,
2012
, “
Mobility and Singularity Analysis of a Class of Two Degrees of Freedom Rotational Parallel Mechanisms Using a Visual Graphic Approach
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041006
.
9.
Ding
,
H. F.
,
Huang
,
P.
,
Liu
,
J. F.
, and
Kecskemethy
,
A.
,
2013
, “
Automatic Structural Synthesis of the Whole Family of Planar 3-Degrees of Freedom Closed Loop Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
4
), p.
041006
.
10.
Yang
,
T. L.
, and
Sun
,
D. J.
,
2012
, “
A General Degree of Freedom Formula for Parallel Mechanisms and Multiloop Spatial Mechanisms
,”
ASME J. Mech. Rob.
,
4
(
1
), p.
011001
.
11.
Lian
,
B.
,
Sun
,
T.
,
Song
,
Y.
,
Jin
,
Y.
, and
Price
,
M.
,
2015
, “
Stiffness Analysis and Experiment of a Novel 5-DOF Parallel Kinematic Machine Considering Gravitational Effects
,”
Int. J. Mach. Tools Manuf.
,
95
, pp.
82
96
.
12.
Slocum
,
A.
,
2010
, “
Kinematic Couplings: A Review of Design Principles and Applications
,”
Int. J. Mach. Tools Manuf.
,
50
(
4
), pp.
310
327
.
13.
Portman
,
V. T.
,
Chapsky
,
V. S.
, and
Shneor
,
Y.
,
2012
, “
Workspace of Parallel Kinematics Machines With Minimum Stiffness Limits: Collinear Stiffness Value Based Approach
,”
Mech. Mach. Theory
,
49
, pp.
67
86
.
14.
Tao
,
Z.
, and
An
,
Q.
,
2013
, “
Interference Analysis and Workspace Optimization of 3-RRR Spherical Parallel Mechanism
,”
Mech. Mach. Theory
,
69
, pp.
62
72
.
15.
Song
,
Y.
,
Lian
,
B.
,
Sun
,
T.
,
Dong
,
G.
, and
Qi
,
Y.
,
2014
, “
A Novel Five-Degree-of-Freedom Parallel Manipulator and Its Kinematic Optimization
,”
ASME J. Mech. Rob.
,
6
(
4
), p.
041008
.
16.
Wang
,
C.
,
Fang
,
Y.
, and
Guo
,
S.
,
2016
, “
Design and Analysis of 3R2T and 3R3T Parallel Mechanisms With High Rotational Capability
,”
ASME J. Mech. Rob.
,
8
(1), p.
011004
.
17.
Metrom
, 2016, “
Metrom Mobile Machine—On-Site Machining
,” METROM Mechatronische Maschinen GmbH, Hartmannsdorf, Germany, http://www.metrom-mobil.com/english/product-range/
18.
Gan
,
D. M.
,
Dai
,
J. S.
,
Dias
,
J.
,
Umer
,
R.
, and
Seneviratne
,
L.
,
2015
, “
Singularity-Free Workspace Aimed Optimal Design of a 2T2R Parallel Mechanism for Automated Fiber Placement
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041022
.
19.
Wang
,
J. S.
,
Liu
,
X. J.
, and
Wu
,
C.
,
2009
, “
Optimal Design of a New Spatial 3-Dof Parallel Robot With Respect to a Frame-Free Index
,”
Sci. China, Ser. E: Technol. Sci.
,
52
(
4
), pp.
986
999
.
20.
Wang
,
J. S.
,
Wu
,
C.
, and
Liu
,
X. J.
,
2010
, “
Performance Evaluation of Parallel Manipulators: Motion/Force Transmissibility and Its Index
,”
Mech. Mach. Theory
,
45
(
10
), pp.
1462
1476
.
21.
Chen
,
C.
, and
Angeles
,
J.
,
2007
, “
Generalized Transmission Index and Transmission Quality for Spatial Linkages
,”
Mech. Mach. Theory
,
42
(
9
), pp.
1225
1237
.
22.
Xie
,
F. G.
,
Liu
,
X. J.
, and
Li
,
J.
,
2014
, “
Performance Indices for Parallel Robots Considering Motion/Force Transmissibility
,”
Seventh International Conference on Intelligent Robotics and Application
(
ICIRA
), Guangzhou, China, Dec. 17–20, pp. 35–43.https://link.springer.com/chapter/10.1007/978-3-319-13966-1_4
23.
Chu
,
J. K.
, and
Sun
,
J. W.
,
2010
, “
A New Approach to Dimension Synthesis of Spatial Four-Bar Linkage Through Numerical Atlas Method
,”
ASME J. Mech. Rob.
,
2
(
4
), p.
041004
.
24.
Sun
,
T.
,
Song
,
Y.
,
Li
,
Y.
, and
Zhang
,
J.
,
2010
, “
Workspace Decomposition Based Dimensional Synthesis of a Novel Hybrid Reconfigurable Robot
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
031009
.
25.
Sun
,
T.
,
Song
,
Y.
,
Li
,
Y.
, and
Liu
,
L.
,
2010
, “
Dimensional Synthesis of a 3-DOF Parallel Manipulator Based on Dimensionally Homogeneous Jacobian Matrix
,”
Sci. China, Ser. E: Technol. Sci.
,
53
(
1
), pp.
168
174
.
26.
Wang
,
C. Z.
,
Fang
,
Y. F.
,
Guo
,
S.
, and
Chen
,
Y. Q.
,
2013
, “
Design and Kinematical Performance Analysis of a 3-RUS/RRR Redundantly Actuated Parallel Mechanism for Ankle Rehabilitation
,”
ASME J. Mech. Rob.
,
5
(
4
), p.
041003
.
27.
Merlet
,
J. P.
,
2006
, “
Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robots
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
199
206
.
28.
Liu
,
X. J.
,
Jin
,
Z.
, and
Gao
,
F.
,
2000
, “
Optimum Design of 3-DOF Spherical Parallel Manipulators With Respect to the Conditioning and Stiffness Indices
,”
Mech. Mach. Theory
,
35
(
9
), pp.
1257
1267
.
29.
Balli
,
S. S.
, and
Chand
,
S.
,
2002
, “
Transmission Angle in Mechanisms (Triangle in Mech)
,”
Mech. Mach. Theory
,
37
(
2
), pp.
175
195
.
30.
Ball
,
R. S.
,
1900
,
A Treatise on the Theory of Screws
,
Cambridge University Press
,
Cambridge, UK
.
31.
Yu
,
J. J.
,
Li
,
S. Z.
,
Su
,
H. J.
, and
Culpepper
,
M. L.
,
2011
, “
Screw Theory Based Methodology for the Deterministic Type Synthesis of Flexure Mechanisms
,”
ASME J. Mech. Rob.
,
3
(
3
), p.
031008
.
32.
Xie
,
F. G.
,
Liu
,
X. J.
,
Luo
,
X.
, and
Wabner
,
M.
,
2016
, “
Mobility, Singularity, and Kinematics Analyses of a Novel Spatial Parallel Mechanism
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061022
.
33.
Stewart
,
D.
,
1965
, “
A Platform With Six Degrees of Freedom
,”
Proc. Inst. Mech. Eng.
,
180
(
1
), pp.
371
386
.
34.
Neugebauer
,
R.
,
Wabner
,
M.
,
Rentzsch
,
H.
, and
Ihlenfeldt
,
S.
,
2011
, “
Structure Principles of Energy Efficient Machine Tools
,”
CIRP J. Manuf. Sci. Technol.
,
4
(
2
), pp.
136
147
.
35.
Bonev
,
I. A.
,
2002
, “
Geometric Analysis of Parallel Mechanisms
,”
Doctoral dissertation
, University of Laval, Quebec, QC, Canada.https://robot.gmc.ulaval.ca/fileadmin/documents/Theses/ilian_bonev.pdf
36.
Bonev
,
I. A.
,
2008
, “
Direct Kinematics of Zero-Torsion Parallel Mechanisms
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Pasadena, CA, May 19–23, pp.
3851
3856
.
37.
Tao
,
D. C.
,
1964
,
Applied Linkage Synthesis
,
Addison-Wesley
,
Boston, MA
, pp.
7
12
.
38.
Wu
,
C.
,
Liu
,
X. J.
,
Wang
,
L. P.
, and
Wang
,
J. S.
,
2010
, “
Optimal Design of Spherical 5R Parallel Manipulators Considering the Motion/Force Transmissibility
,”
ASME J. Mech. Des.
,
132
(
3
), p.
031002
.
You do not currently have access to this content.