Micro-aerial vehicles (MAVs) face limited flight times, which adversely impacts their efficacy for scenarios such as first response and disaster recovery, where it might be useful to deploy persistent radio relays and quadrotors for monitoring or sampling. Thus, it is important to enable micro-aerial vehicles to land and perch on different surfaces to save energy by cutting power to motors. We are motivated to use a downward-facing gripper for perching, as opposed to a side-mounted gripper, since it could also be used to carry payloads. In this paper, we predict and verify the performance of a custom gripper designed for perching on smooth surfaces. We also present control and planning algorithms, enabling an underactuated quadrotor with a downward-facing gripper to perch on inclined surfaces while satisfying constraints on actuation and sensing. Experimental results demonstrate the proposed techniques through successful perching on a glass surface at various inclinations, including vertical.

References

1.
Mulgaonkar
,
Y.
,
Whitzer
,
M.
,
Kroninger
,
C. M.
, and
Aaron
,
M.
,
2014
, “
Power and Weight Considerations in Small, Agile, Quadrotors
,”
Proc. SPIE
,
9083
, p. 90831Q.
2.
Lussier Desbiens
,
A.
, and
Cutkosky
,
M. R.
,
2010
, “
Landing and Perching on Vertical Surfaces With Microspines for Small Unmanned Air Vehicles
,”
J. Intell. Rob. Syst.
,
57
(
1–4
), pp.
313
327
.
3.
Kovač
,
M.
,
Germann
,
J.
,
Hürzeler
,
C.
,
Siegwart
,
R. Y.
, and
Floreano
,
D.
,
2010
, “
A Perching Mechanism for Micro Aerial Vehicles
,”
J. Micro Nano Mech.
,
5
(
3–4
), pp.
77
91
.
4.
Lussier Desbiens
,
A.
,
Asbeck
,
A. T.
, and
Cutkosky
,
M. R.
,
2011
, “
Landing, Perching and Taking Off From Vertical Surfaces
,”
Int. J. Rob. Res.
,
30
(
3
), pp.
355
370
.
5.
Moore
,
J.
, and
Tedrake
,
R.
,
2009
, “
Powerline Perching With a Fixed-Wing UAV
,”
AIAA Infotech@Aerospace Conference
, Seattle, WA, Apr. 6-9,
AIAA
Paper No. 2009–1959.
6.
Moore
,
J.
,
Cory
,
R.
, and
Tedrake
,
R.
,
2014
, “
Robust Post-Stall Perching With a Simple Fixed-Wing Glider Using LQR-Trees
,”
Bioinspiration Biomimetics
,
9
(
2
), p.
025013
.
7.
Doyle
,
C. E.
,
Bird
,
J. J.
,
Isom
,
T. A.
,
Johnson
,
C. J.
,
Kallman
,
J. C.
,
Simpson
,
J. A.
,
King
,
R. J.
,
Abbott
,
J. J.
, and
Minor
,
M. A.
,
2011
, “
Avian-Inspired Passive Perching Mechanism for Robotic Rotorcraft
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), San Francisco, CA, Sept. 25–30, pp.
4975
4980
.
8.
Doyle
,
C. E.
,
Bird
,
J. J.
,
Isom
,
T. A.
,
Kallman
,
J. C.
,
Bareiss
,
D. F.
,
Dunlop
,
D. J.
,
King
,
R. J.
,
Abbott
,
J. J.
, and
Minor
,
M. A.
,
2013
, “
An Avian-Inspired Passive Mechanism for Quadrotor Perching
,”
IEEE/ASME Trans. Mechatronics
,
18
(
2
), pp.
506
517
.
9.
Burroughs
,
M. L.
,
Beauwen Freckleton
,
K.
,
Abbott
,
J. J.
, and
Minor
,
M. A.
,
2015
, “
A Sarrus-Based Passive Mechanism for Rotorcraft Perching
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
011010
.
10.
Chi
,
W.
,
Low
,
K. H.
,
Hoon
,
K. H.
, and
Tang
,
J.
,
2014
, “
An Optimized Perching Mechanism for Autonomous Perching With a Quadrotor
,” IEEE
International Conference on Robotics & Automation
(
ICRA
), Hong Kong, May 31–June 7, pp.
3109
3115
.
11.
Hawkes
,
E. W.
,
Christensen
,
D. L.
,
Eason
,
E. V.
,
Estrada
,
M. A.
,
Heverly
,
M.
,
Hilgemann
,
E.
,
Jiang
,
H.
,
Pope
,
M. T.
,
Parness
,
A.
, and
Cutkosky
,
M. R.
,
2013
, “
Dynamic Surface Grasping With Directional Adhesion
,”
International Conference on Intelligent Robots and Systems
(
IROS
), Tokyo, Nov. 3–7, pp.
5487
5493
.
12.
Daler
,
L.
,
Klaptocz
,
A.
,
Briod
,
A.
,
Sitti
,
M.
, and
Floreano
,
D.
,
2013
, “
A Perching Mechanism for Flying Robots Using a Fibre-Based Adhesive
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Karlsruhe, Germany, May 6–10, pp.
4433
4438
.
13.
Kalantari
,
A.
,
Mahajan
,
K.
,
Ruffatto
,
D.
, and
Spenko
,
M.
,
2015
, “
Autonomous Perching and Take-Off on Vertical Walls for a Quadrotor Micro Air Vehicle
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seattle, WA, May 26–30, pp.
4669
4674
.
14.
Tsukagoshi
,
H.
,
Watanabe
,
M.
,
Hamada
,
T.
,
Ashlih
,
D.
, and
Iizuka
,
R.
,
2015
, “
Aerial Manipulator With Perching and Door-Opening Capability
,”
2015 IEEE International Conference on Robotics and Automation
(
ICRA
), Seattle, WA, May 26–30, pp.
4663
4668
.
15.
Jiang
,
H.
,
Pope
,
M. T.
,
Hawkes
,
E. W.
,
Christensen
,
D. L.
,
Estrada
,
M. A.
,
Parlier
,
A.
,
Tran
,
R.
, and
Cutkosky
,
M. R.
,
2014
, “
Modeling the Dynamics of Perching With Opposed-Grip Mechanisms
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Hong Kong, May 31–June 7, pp. 3102–3108.
16.
Zhang
,
Z.
,
Xie
,
P.
, and
Ma
,
O.
,
2013
, “
Bio-Inspired Trajectory Generation for UAV Perching
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM
), Wollongong, NSW, Australia, July 9–12, pp.
997
1002
.
17.
Mellinger
,
D.
,
Michael
,
N.
, and
Kumar
,
V.
,
2010
, “
Trajectory Generation and Control for Precise Aggressive Maneuvers With Quadrotors
,” 12th International Symposium on Experimental Robotics (
ISER
), New Delhi, India, Dec. 18–21, pp. 361–373.
18.
Mellinger
,
D.
,
Shomin
,
M.
, and
Kumar
,
V.
,
2010
, “
Control of Quadrotors for Robust Perching and Landing
,”
International Powered Lift Conference (IPLC)
, Philadelphia, PA, Oct. 5–7.
19.
Mellinger
,
D.
,
Michael
,
N.
, and
Kumar
,
V.
,
2012
, “
Trajectory Generation and Control for Precise Aggressive Maneuvers With Quadrotors
,”
Int. J. Rob. Res.
,
31
(
5
), pp.
664
674
.
20.
Mohta
,
K.
,
Kumar
,
V.
, and
Daniilidis
,
K.
,
2014
, “
Vision-Based Control of a Quadrotor for Perching on Lines
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Hong Kong, May 31–June 7, pp. 3130–3136.
21.
Thomas
,
J.
,
Polin
,
J.
,
Sreenath
,
K.
, and
Kumar
,
V.
,
2013
, “
Avian-Inspired Grasping for Quadrotor Micro UAVs
,”
ASME
Paper No. DETC2013-13289.
22.
Thomas
,
J.
,
Loianno
,
G.
,
Pope
,
M.
,
Hawkes
,
E. W.
,
Estrada
,
M. A.
,
Jiang
,
H.
,
Cutkosky
,
M. R.
, and
Kumar
,
V.
,
2015
, “
Planning and Control of Aggressive Maneuvers for Perching on Inclined and Vertical Surfaces
,”
International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE)
, Boston, MA, Aug. 2-5,
ASME
Paper No. DETC2015-47710.
23.
Hawkes
,
E. W.
,
Jiang
,
H.
, and
Cutkosky
,
M. R.
,
2015
, “
Three-Dimensional Dynamic Surface Grasping With Dry Adhesion
,”
Int. J. Rob. Res.
, epub.
24.
Jiang
,
H.
,
Hawkes
,
E. W.
,
Arutyunov
,
V.
,
Tims
,
J.
,
Fuller
,
C.
,
King
,
J. P.
,
Seubert
,
C.
,
Chang
,
H. L.
,
Parness
,
A.
, and
Cutkosky
,
M. R.
, “
Scaling Controllable Adhesives to Grapple Floating Objects in Space
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seattle, WA, May 26–30, pp.
2828
2835
.
25.
Jiang
,
H.
,
Pope
,
M. T.
,
Estrada
,
M. A.
,
Edwards
,
B.
,
Cuson
,
M.
,
Hawkes
,
E. W.
, and
Cutkosky
,
M. R.
,
2015
, “
Perching Failure Detection and Recovery With Onboard Sensing
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Hamburg, Germany, Sept. 28–Oct. 2, pp. 1264-1270.
26.
Crandall
,
K. L.
, and
Minor
,
M. A.
,
2015
, “
UAV Fall Detection From a Dynamic Perch Using Instantaneous Centers of Rotation and Inertial Sensing
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seattle, WA, May 26–30, pp. 4675–4679.
27.
Estrada
,
M. A.
,
Hawkes
,
E. W.
,
Christensen
,
D. L.
, and
Cutkosky
,
M. R.
,
2014
, “
Perching and Vertical Climbing: Design of a Multimodal Robot
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Hong Kong, May 31–June 7, pp.
4215
4221
.
28.
Lee
,
T.
,
Leoky
,
M.
, and
McClamroch
,
N. H.
,
2010
, “
Geometric Tracking Control of a Quadrotor UAV on SE(3)
,”
49th IEEE Conference on Decision and Control
(
CDC
), Atlanta, GA, Dec. 15–17, pp.
5420
5425
.
29.
Mellinger
,
D.
, and
Kumar
,
V.
,
2011
, “
Minimum Snap Trajectory Generation and Control for Quadrotors
,” IEEE
International Conference on Robotics and Automation
(
ICRA
), Shanghai, May 9–13, pp.
2520
2525
.
30.
Fliess
,
M.
,
Lévine
,
J.
,
Martin
,
P.
, and
Rouchon
,
P.
,
1995
, “
Flatness and Defect of Non-Linear Systems: Introductory Theory and Examples
,”
Int. J. Control
,
61
(
6
), Shanghai, May 9–13, pp.
1327
1361
.
31.
Murray
,
R.
,
Rathinam
,
M.
, and
Sluis
,
W.
,
1995
, “
Differential Flatness of Mechanical Control Systems: A Catalog of Prototype Systems
,”
ASME International Congress and Exposition
, San Francisco, CA, Nov. 12–17.
32.
Michael
,
N.
,
Mellinger
,
D.
,
Lindsey
,
Q.
, and
Kumar
,
V.
,
2010
, “
The GRASP Multiple Micro-UAV Testbed
,”
IEEE Rob. Autom. Mag.
,
17
(
3
), pp.
56
65
.
33.
Powers
,
C.
,
Mellinger
,
D.
,
Kushleyev
,
A.
,
Kothmann
,
B.
, and
Kumar
,
V.
,
2012
, “
Influence of Aerodynamics and Proximity Effects in Quadrotor Flight
,”
13th International Symposium on Experimental Robotics
(
ISER
), Québec City, Canada, June 18–21, pp. 289–302.
You do not currently have access to this content.