This paper describes a synthesis technique that constrains a spatial serial chain into a single degree-of-freedom mechanism using planar six-bar function generators. The synthesis process begins by specifying the target motion of a serial chain that is parameterized by time. The goal is to create a mechanism with a constant velocity rotary input that will achieve that motion. To do this, we solve the inverse kinematics equations to find functions of each serial joint angle with respect to time. Since a constant velocity input is desired, time is proportional to the angle of the input link, and each serial joint angle can be expressed as functions of the input angle. This poses a separate function generator problem to control each joint of the serial chain. Function generators are linkages that coordinate their input and output angles. Each function is synthesized using a technique that finds 11 position Stephenson II linkages, which are then packaged onto the serial chain. Using pulleys and the scaling capabilities of function generating linkages, the final device can be packaged compactly. We describe this synthesis procedure through the design of a biomimetic device for reproducing a flapping wing motion.

References

1.
Plecnik
,
M.
, and
McCarthy
,
J. M.
,
2015
, “
Computational Design of Stephenson II Six-Bar Function Generators for 11 Accuracy Points
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
011017
.
2.
Roth
,
B.
,
1967
, “
The Kinematics of Motion Through Finitely Separated Positions
,”
ASME J. Appl. Mech.
,
34
(
3
), pp.
591
598
.
3.
Roth
,
B.
,
1967
, “
Finite-Position Theory Applied to Mechanism Synthesis
,”
ASME J. Appl. Mech.
,
34
(
3
), pp.
599
605
.
4.
Sandor
,
G. N.
,
1968
, “
Principles of a General Quaternion-Operator Method of Spatial Kinematic Synthesis
,”
ASME J. Appl. Mech.
,
35
(
1
), pp.
40
46
.
5.
Suh
,
C. H.
,
1968
, “
Design of Space Mechanisms for Rigid Body Guidance
,”
ASME J. Manuf. Sci. Eng.
,
90
(
3
), pp.
499
506
.
6.
Tsai
,
L. W.
, and
Roth
,
B.
,
1972
, “
Design of Dyads With Helical, Cylindrical, Spherical, Revolute and Prismatic Joints
,”
Mech. Mach. Theory
,
7
(
1
), pp.
85
102
.
7.
Sandor
,
G. N.
,
Weng
,
T.
, and
Xu
,
Y.
,
1988
, “
The Synthesis of Spatial Motion Generators With Prismatic, Revolute and Cylindric Pairs Without Branching Defect
,”
Mech. Mach. Theory
,
23
(
4
), pp.
269
274
.
8.
Innocenti
,
C.
,
1995
, “
Polynomial Solution of the Spatial Burmester Problem
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
64
68
.
9.
Liao
,
Q.
, and
McCarthy
,
J. M.
,
2001
, “
On the Seven Position Synthesis of a 5-SS Platform Linkage
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
74
79
.
10.
Plecnik
,
M.
, and
McCarthy
,
J. M.
,
2012
, “
Design of a 5-SS Spatial Steering Linkage
,”
ASME
Paper No. DETC2012-71405.
11.
Murray
,
A. P.
, and
McCarthy
,
J. M.
,
1999
, “
Burmester Lines of Spatial Five Position Synthesis From the Analysis of a 3-CPC Platform
,”
ASME J. Mech. Des.
,
121
(
1
), pp.
45
49
.
12.
Larochelle
,
P.
,
2012
, “
Synthesis of Spatial CC Dyads and 4C Mechanisms for Pick & Place Tasks With Guiding Locations
,”
Latest Advances in Robot Kinematics
,
Springer
,
Dordrecht
, pp.
437
444
.
13.
Mavroidis
,
C.
,
Lee
,
E.
, and
Alam
,
M.
,
2001
, “
A New Polynomial Solution to the Geometric Design Problem of Spatial RR Robot Manipulators Using the Denavit and Hartenberg Parameters
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
58
67
.
14.
Lee
,
E.
,
Mavroidis
,
C.
, and
Merlet
,
J. P.
,
2002
, “
Five precision points synthesis of spatial RRR manipulators using interval analysis
,”
ASME
Paper No. DETC2002/MECH-34272.
15.
Lee
,
E.
, and
Mavroidis
,
C.
,
2002
, “
Solving the Geometric Design Problem of Spatial 3R Robot Manipulators Using Polynomial Homotopy Continuation
,”
ASME J. Mech. Des.
,
124
(
4
), pp.
652
661
.
16.
Lee
,
E.
, and
Mavroidis
,
C.
,
2004
, “
Geometric Design of 3r Robot Manipulators for Reaching Four End-Effector Spatial Poses
,”
Int. J. Rob. Res.
,
23
(
3
), pp.
247
254
.
17.
Su
,
H.
,
Wampler
,
C. W.
, and
McCarthy
,
J. M.
,
2004
, “
Geometric Design of Cylindric PRS Serial Chains
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
269
277
.
18.
Su
,
H.
, and
McCarthy
,
J. M.
,
2005
, “
The Synthesis of an RPS Serial Chain to Reach a Given Set of Task Positions
,”
Mech. Mach. Theory
,
40
(
7
), pp.
757
775
.
19.
Perez-Gracia
,
A.
,
2011
, “
Synthesis of Spatial RPRP Closed Linkages for a Given Screw System
,”
ASME J. Mech. Rob.
,
3
(
2
), p.
021009
.
20.
Batbold
,
B.
,
Yihun
,
Y.
,
Wolper
,
J. S.
, and
Perez-Gracia
,
A.
,
2014
, “
Exact Workspace Synthesis for RCCR Linkages
,”
Computational Kinematics
,
Springer
,
Dordrecht
, pp.
349
357
.
21.
Perez
,
A.
, and
McCarthy
,
J. M.
,
2004
, “
Dual Quaternion Synthesis of Constrained Robotic Systems
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
425
435
.
22.
Perez
,
A.
,
Su
,
H.
, and
McCarthy
,
J. M.
,
2004
, “
Synthetica 2.0: Software for the Synthesis of Constrained Serial Chains
,”
ASME
Paper No. DETC2004-57524.
23.
Perez-Gracia
,
A.
, and
McCarthy
,
J. M.
,
2006
, “
Kinematic Synthesis of Spatial Serial Chains Using Clifford Algebra Exponentials
,”
Proc. Inst. Mech. Eng., Part C
,
220
(
7
), pp.
953
968
.
24.
Simo-Serra
,
E.
, and
Perez-Gracia
,
A.
,
2014
, “
Kinematic Synthesis Using Tree Topologies
,”
Mech. Mach. Theory
,
72
, pp.
94
113
.
25.
Soh
,
G. S.
,
2014
, “
Rigid Body Guidance of Human Gait as Constrained TRS Serial Chain
,”
ASME
Paper No. DETC2014-34881.
26.
Svoboda
,
A.
,
1948
,
Computing Mechanisms and Linkages
,
McGraw-Hill
,
New York
.
27.
McLarnan
,
C. W.
,
1963
, “
Synthesis of Six-Link Plane Mechanisms by Numerical Analysis
,”
J. Eng. Ind.
,
85
(
1
), pp.
5
10
.
28.
Dhingra
,
A. K.
,
Cheng
,
J. C.
, and
Kohli
,
D.
,
1994
, “
Synthesis of Six-Link, Slider-Crank and Four-Link Mechanisms for Function, Path and Motion Generation Using Homotopy With m-Homogenization
,”
ASME J. Mech. Des.
,
116
(
4
), pp.
1122
1131
.
29.
Luo
,
Z.
, and
Dai
,
J. S.
,
2007
, “
Patterned Bootstrap: A New Method That Gives Efficiency for Some Precision Position Synthesis Problems
,”
ASME J. Mech. Des.
,
129
(
2
), pp.
173
183
.
30.
Banala
,
S. K.
, and
Agrawal
,
S. K.
,
2005
, “
Design and Optimization of a Mechanism for Out-Of-Plane Insect Winglike Motion With Twist
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
841
844
.
31.
McDonald
,
M.
, and
Agrawal
,
S. K.
,
2010
, “
Design of a Bio-Inspired Spherical Four-Bar Mechanism for Flapping-Wing Micro Air-Vehicle Applications
,”
ASME J. Mech. Rob.
,
2
(
2
), p.
021012
.
32.
Sreetharan
,
P. S.
,
Whitney
,
J. P.
,
Strauss
,
M. D.
, and
Wood
,
R. J.
,
2012
, “
Monolithic Fabrication of Millimeter-Scale Machines
,”
J. Micromech. Microeng.
,
22
(
5
), p.
055027
.
33.
Teoh
,
Z. E.
, and
Wood
,
R. J.
,
2013
, “
A Flapping-Wing Microrobot With a Differential Angle-of-Attack Mechanism
,”
2013 IEEE International Conference, Robotics and Automation
(
ICRA
), Karlsruhe, Germany, May 6–10, pp.
1381
1388
.
34.
Keennon
,
M.
,
Andryukov
,
A.
,
Klingebiel
,
K.
, and
Won
,
H.
,
2014
, “
Air Vehicle Flight Mechanism and Control Method for Non-Sinusoidal Wing Flapping
,”
U.S. patent 2014/0158821 A1
.
35.
Haas
,
F.
, and
Wootton
,
R. J.
,
1996
, “
Two Basic Mechanisms in Insect Wing Folding
,”
Proc. R. Soc. London, Ser. B
,
263
(
1377
), pp.
1651
1658
.
36.
Tobalske
,
B.
, and
Dial
,
K.
,
1996
, “
Flight Kinematics of Black-Billed Magpies and Pigeons Over a Wide Range of Speeds
,”
J. Exp. Biol.
,
199
(
2
), pp.
263
280
.
37.
Tobalske
,
B. W.
,
Olson
,
N. E.
, and
Dial
,
K. P.
,
1997
, “
Flight Style of the Black-Billed Magpie: Variation in Wing Kinematics, Neuromuscular Control, and Muscle Composition
,”
J. Exp. Zool.
,
279
(
4
), pp.
313
329
.
38.
Gan
,
D. M.
,
Liao
,
Q. Z.
,
Dai
,
J. S.
,
Wei
,
S. M.
, and
Qiao
,
S. G.
,
2008
, “
Dual Quaternion Based Inverse Kinematics of the General Spatial 7R Mechanism
,”
Proc. IMechE, Part C
,
222
(
8
), pp.
1593
1598
.
39.
McCarthy
,
J. M.
, and
Soh
,
G. S.
,
2010
,
Geometric Design of Linkages
, 2nd ed.,
Springer
,
New York
.
40.
Greenberg
,
M. D.
,
1988
,
Advanced Engineering Mathematics
,
Prentice-Hall
,
Upper Saddle River, NJ
.
41.
Proctor
,
N. S.
,
1993
,
Manual of Ornithology: Avian Structure & Function
,
Yale University Press
,
New Haven, CT
.
42.
Bates
,
D. J.
,
Hauenstein
,
J. D.
,
Sommese
,
A. J.
, and
Wampler
,
C. W.
,
2006
, “
Bertini: Software for Numerical Algebraic Geometry
,” available at www.bertini.nd.edu
43.
Bates
,
D. J.
,
Hauenstein
,
J. D.
,
Sommese
,
A. J.
, and
Wampler
,
C. W.
,
2013
,
Numerically Solving Polynomial Systems With Bertini
,
SIAM Press
,
Philadelphia, PA
.
44.
Dijksman
,
E. A.
,
1976
,
Motion Geometry of Mechanisms
,
Cambridge University Press
,
London, UK
.
You do not currently have access to this content.