Recent research on exoskeletons and braces has examined the ways of improving flexibility, wearability or overall weight-reduction. Part of the challenge arises from the significant loading requirements, while the other part comes from the inflexibilities associated with traditional (rigid link-moving joint) system architectures. Compliant mechanisms offer a class of articulated multibody systems that allow creation of lightweight yet adjustable-stiffness solutions for exoskeletons and braces, which we study further. In particular, we will introduce the parallel coupled compliant plate (PCCP) mechanism and pennate elastic band (PEB) spring architecture as potential candidates for brace development. PCCP/PEB system provides adjustable passive flexibility and selective stiffness to the user with respect to posture of knee joint, without need for mediation by active devices and even active sensors. In addition to the passive mode of operation of the PCCP/PEB system, a semi-active design variant is also explored. In this semi-active design, structural stiffness reconfigurability is exploited to allow for changes of preload of the PEB spring to provide force and torque customization capability. The systematic study of both aspects (passive and semi-active) upon the performance of PCCP/PEB system is verified by a lightweight 3D printed physical brace prototype within a ground-truth (optical motion tracking and six degrees-of-freedom (6DOF) force transducer) measurement framework.

References

1.
Kutzner
,
I.
,
Heinlein
,
B.
,
Graichen
,
F.
,
Bender
,
A.
,
Rohlmann
,
A.
,
Halder
,
A.
,
Beier
,
A.
, and
Bergmann
,
G.
,
2010
, “
Loading of the Knee Joint During Activities of Daily Living Measured In Vivo in Five Subjects
,”
J. Biomech.
,
43
(
11
), pp.
2164
2173
.10.1016/j.jbiomech.2010.03.046
2.
Gorman
,
C.
, and
Park
,
A.
,
2002
,
The Coming Epidemic of Arthritis
,
Time Inc.
,
New York
.
3.
Shimokochi
,
Y.
, and
Shultz
,
S.
,
2008
, “
Mechanisms of Noncontact Anterior Cruciate Ligament Injury
,”
J. Athletic Train.
,
43
(
4
), pp.
396
408
.10.4085/1062-6050-43.4.396
4.
Kirkley
,
A.
,
Wester-Bogaert
,
S.
,
Litchfield
,
R.
,
Amendola
,
A.
, and
MacDonald
,
S.
,
1999
, “
The Effect of Bracing on Varus Gonarthrosis
,”
J. Bone Jt. Surg.
,
81
(
4
), pp.
539
548
.10.3928/01477447-20110228-19
5.
Pollo
,
F.
,
Otis
,
J.
,
Backus
,
S.
,
Warren
,
R.
, and
Wickiewicz
,
T.
,
2002
, “
Reduction of Medial Compartment Loads With Valgus Bracing of the Osteoarthritic Knee
,”
Am. J. Sports Med.
,
30
(
3
), pp.
414
421
.10.2106/JBJS
6.
Herr
,
H.
,
2009
, “
Exoskeletons and Orthoses: Classification, Design Challenges and Future Directions
,”
J. Neuro Eng. Rehabil.
,
6
, pp.
21
30
.10.1186/1743-0003-6-21
7.
Dollar
,
A.
, and
Herr
,
H.
,
2008
, “
Lower Extremity Exoskeletons and Active Orthoses: Challenges and State-of-the-Art
,”
IEEE Trans. Rob.
,
24
(
1
), pp.
144
156
.10.1109/TRO.2008.915453
8.
Herr
,
H.
, and
Gamow
,
R.
,
1997
, “
Shoe and Foot Prosthesis With Bending Beam Spring Structures
,” U.S. Patent No. 5,701,686.
9.
ALAN Sportartikel
,
2013
, “
PowerSkip: The Ultimate Running and Jumping Event
,” ALAN Sportartikel GmbH, Kottgeisering, Germany, http://www.powerskip.de/
10.
Grabowski
,
A.
, and
Herr
,
H.
,
2009
, “
Leg Exoskeleton Reduces the Metabolic Cost of Human Hopping
,”
J. Appl. Physiol.
,
107
(
3
), pp.
670
678
.10.1152/japplphysiol.91609.2008
11.
Zoss
,
A.
,
Kazerooni
,
H.
, and
Chu
,
A.
,
2006
, “
Biomechanical Design of the Berkeley Lower Extremity Exoskeleton (BLEEX)
,”
IEEE/ASME Mechatronics
,
11
(
2
), pp.
128
138
.10.1109/TMECH.2006.871087
12.
Lockheed Martin
,
2011
, “
HULC Robotic Exoskeleton
,” Lockheed Martin Corp., Bethesda, MD, http://www.lockheedmartin.com/us/products/hulc/hulc-press-releases.html
13.
Sakurai
,
T.
, and
Sankai
,
Y.
,
2009
, “
Development of Motion Instruction System With Interactive Robot Suit HAL
,”
IEEE International Conference on Robotics and Biomimetics
(
ROBIO
), Guilin,
China
, Dec. 19–23, pp.
1141
1147
.http://dx.doi.org/10.1109/ROBIO.2009.5420755
14.
Dollar
,
A.
, and
Herr
,
H.
,
2008
, “
Design of a Quasi-Passive Knee Exoskeleton to Assist Running
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2008
), Nice,
France
, Sept. 22–26, pp.
747
754
.10.1109/IROS.2008.4651202
15.
Blaya
,
J.
, and
Herr
,
H.
,
2004
, “
Adaptive Control of a Variable-Impedance Ankle–Foot Orthosis to Assist Drop-Foot Gait
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
12
(
1
), pp.
21
31
.10.1109/TNSRE.2003.823266
16.
Bridge
,
M.
,
Stanish
,
W.
,
Russell
,
D.
, and
Morash
,
J.
,
2008
, “
Knee Bracing in Sports Medicine: A Review
,”
Tech. Knee Surg.
,
7
(
4
), pp.
251
260
.10.1097/BTK.0b013e31818f8ee7
17.
McDavid
,
2013
, “
McDavid Knee Brace
,” McDavid USA, Woodridge, IL, http://www.mcdavidusa.com/sportmed/knee
18.
Össur
,
2015
, “
Össur Unloader
,” Össur, Reykjavik, Iceland, http://www.ossur.com/oa-solutions
19.
Townsend,
2012
, “
Townsend OA Knee Brace
,”
Townsend Design
,
Bakersfield, CA
, http://www.townsenddesign.com/Townsend_Design/Townsend_Design.html
20.
DJO Global
,
2015
, “
DJO OA Knee Brace
,”
DJO Global Inc.
,
Vista, CA
, https://www.djoglobal.com/products/brand?f%5B0%5D=im_field_brand%3A10
21.
Mao
,
Y.
, and
Agrawal
,
S.
,
2012
, “
Design of a Cable-Driven Arm Exoskeleton (CAREX) for Neural Rehabilitation
,”
IEEE Trans. Rob.
,
28
(
4
), pp.
922
931
.10.1109/TRO.2012.2189496
22.
Khatib
,
S.
,
Luca
,
A.
, and
Book
,
W.
,
2008
, “
Robots With Flexible Elements
,”
Handbook of Robotics
,
Springer
, Berlin.
23.
Agrawal
,
S.
,
Dubey
,
V.
,
Gangloff
,
J.
,
Brackbill
,
E.
,
Mao
,
Y.
, and
Sangwan
,
V.
,
2009
, “
Design and Optimization of a Cable Driven Upper Arm Exoskeleton
,”
ASME J. Med. Devices
,
3
(
3
), p.
031004
.10.1115/1.3191724
24.
Howell
,
L. L.
,
2001
,
Compliant Mechanism
,
Wiley
,
New York
.
25.
Hopkins
,
J.
, and
Culpepper
,
M.
,
2006
, “
A Quantitative, Constraint-Based Design Method for Multi-Axis Flexure Stages for Precision Positioning and Equipment
,”
21st Annual Meeting of the American Society for Precision Engineering
(
ASPE
),
Monterrey, CA
Oct. 15–20.http://www.aspe.net/publications/Annual_2006/POSTERS/1EQUIP/1ANALY/2045.PDF
26.
Awtar
,
S.
, and
Parmar
,
G.
,
2013
, “
Design of a Large Range XY Nanopositioning System
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021008
.10.1115/1.4023874
27.
Awtar
,
S.
,
Ustick
,
J.
, and
Sen
,
S.
,
2012
, “
An XYZ Parallel-Kinematic Flexure Mechanism With Geometrically Decoupled Degrees of Freedom
,”
ASME J. Mech. Rob.
,
5
(
1
), p. 015001.10.1115/1.4007768
28.
Hopkins
,
J.
,
2013
, “
Designing Hybrid Flexure Systems and Elements Using Freedom and Constraint Topologies
,”
Mech. Sci.
,
4
(
2
), pp.
319
331
.10.5194/ms-4-319-2013
29.
Su
,
H.
,
2011
, “
Mobility Analysis of Flexure Mechanisms Via Screw Algebra
,”
ASME J. Mech. Rob.
,
3
(
4
), p.
041010
.10.1115/1.4004910
30.
Su
,
H.
,
Shi
,
H.
, and
Yu
,
J.
,
2012
, “
A Symbolic Formulation for Analytical Compliance Analysis and Synthesis of Flexure Mechanisms
,”
ASME J. Mech. Des.
,
134
(
5
), p.
051009
.10.1115/1.4006441
31.
Mankame
,
N.
, and
Ananthasuresh
,
G.
,
2002
, “
Contact Aided Compliant Mechanisms: Concept and Preliminaries
,”
ASME
Paper No. DETC2002/MECH-34211.10.1115/DETC2002/MECH-34211
32.
Tummala
,
Y.
,
Wissa
,
A.
,
Frecker
,
M.
, and
Hubbard
,
J. E.
,
2014
, “
Design and Optimization of a Contact-Aided Compliant Mechanism for Passive Bending
,”
ASME J. Mech. Rob.
,
6
(
3
), p.
031013
.10.1115/1.4027702
33.
Mehta
,
V.
,
Frecker
,
M.
, and
Lesieutre
,
G.
,
2009
, “
Stress Relief in Contact-Aided Compliant Cellular Mechanisms
,”
ASME J. Mech. Design
,
131
(
9
), p.
091009
.10.1115/1.3165778
34.
Jun
,
S.
,
2014
, “
Semi-Active PCCP/PEB Smart Knee Brace
,”
Automation Robotics Mechatronics Laboratory, University at Buffalo (SUNY),
Buffalo, NY
, https://www.youtube.com/watch?v=wPuYBphedz8
35.
Roass
,
A.
, and
Andersson
,
G.
,
1982
, “
Normal Range of Motion of the Hip, Knee and Ankle Joints in Male Subjects, 30–40 Years of Age
,”
Acta Orthop.
,
53
(
2
), pp.
205
208
.10.3109/17453678208992202
36.
NaturalPoint
,
2014
, “
OptiTrack Flex Series
,”
NaturalPoint Inc.
,
Corvallis, OR
, https://www.naturalpoint.com/optitrack/hardware/
37.
ATI
,
2015
, “
ATI Delta Force Torque Sensor
,” ATI Industrial Automation, Apex, NC, http://www.ati-ia.com/products/ft/ft_models.aspx?id=Delta
38.
Winter
,
D.
,
2009
,
Biomechanics and Motor Control of Human Movement
,
Wiley
,
New York
.
You do not currently have access to this content.