Type synthesis of multimode parallel manipulators (PMs) (also parallel manipulators with multiple operation modes) is an open issue in the research on reconfigurable mechanisms and robots. This paper deals with the type synthesis of 3-DOF (degree-of-freedom) parallel manipulators with both a planar operation mode and a spatial translational operation mode. The type synthesis of planar parallel manipulators, which refer to parallel manipulators in which the moving platform undergoes planar motion, is first dealt with using the virtual-chain approach. Types of planar parallel manipulators, including those involving Bennett compositional unit (CU), are obtained. Then, the types of 3-DOF parallel manipulators with both a planar operation mode and a translational operation mode are obtained. This paper focuses on 3-DOF parallel manipulators composed of only revolute joints. This work contributes to the type synthesis of parallel manipulators and can be extended to the type synthesis of other classes of multimode parallel manipulators.

References

1.
Hervé
,
J. M.
, and
Sparacino
,
F.
,
1991
, “
Structural Synthesis of Parallel Robots Generating Spatial Translation
,”
Proceedings of the fifth International Conference on Advanced Robotics
,
Pisa, Italy
, Vol.
1
, pp.
808
813
.
2.
Huang
,
Z.
, and
Li
,
Q.-C.
,
2002
, “
General Methodology for the Type Synthesis of Lower-Mobility Symmetrical Parallel Manipulators and Several Novel Manipulators
,”
Int. J. Rob. Res.
,
21
(
2
), pp.
131
145
.10.1177/027836402760475342
3.
Angeles
,
J.
,
2004
, “
The Qualitative Synthesis of Parallel Manipulators
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
617
624
.10.1115/1.1667955
4.
Carricato
,
M.
, and
Parenti-Castelli
,
V.
,
2003
, “
A Family of 3-DOF Translational Parallel Manipulators
,”
ASME J. Mech. Des.
,
125
(
2
), pp.
302
307
.10.1115/1.1563635
5.
Kim
,
D.
, and
Chung
,
W. K.
,
2003
, “
Kinematic Condition Analysis of Three-DOF Pure Translational Parallel Manipulators
,”
ASME J. Mech. Des.
,
125
(
2
), pp.
323
331
.10.1115/1.1564573
6.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2004
, “
Type Synthesis of 3-DOF Translational Parallel Manipulators Based on Screw Theory
,”
ASME J. Mech. Des.
,
126
(
1
), pp.
83
92
.10.1115/1.1637662
7.
Jin
,
Q.
, and
Yang
,
T.-L.
,
2004
, “
Theory for Topology Synthesis of Parallel Manipulators and Its Application to Three-Dimension-Translation Parallel Manipulators
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
625
639
.10.1115/1.1758253
8.
Fang
,
Y.
, and
Tsai
,
L.-W.
,
2004
, “
Analytical Identification of Limb Structures for Translational Parallel Manipulators
,”
J. Rob. Syst.
,
21
(
5
), pp.
209
218
.10.1002/rob.20010
9.
Gogu
,
G.
,
2004
, “
Structural Synthesis of Fully-Isotropic Translational Parallel Robots via Theory of Linear Transformations
,”
Eur. J. Mech. A/Solids
,
23
(
6
), pp.
1021
1039
.10.1016/j.euromechsol.2004.08.006
10.
Kong
,
X.
, and
Gosselin
,
C.
,
2007
,
Type Synthesis of Parallel Mechanisms
,
Springer
,
The Netherlands
.
11.
Meng
,
J.
,
Liu
,
G.
, and
Li
,
Z.
,
2007
, “
A Geometric Theory for Analysis and Synthesis of Sub-6 DOF Parallel Manipulators
,”
IEEE Trans. Rob.
,
23
(
4
),
625
649
.10.1109/TRO.2007.898995
12.
Rico
,
J. M.
,
Cervantes-Sánchez
,
J. J.
,
Tadeo-Chávez
,
A.
,
Prez-Soto
,
G. I.
, and
Rocha-Chavarra
,
J.
,
2008
, “
New Considerations on the Theory of Type Synthesis of Fully Parallel Platforms
,”
ASME J. Mech. Des.
,
130
(
11
), p.
112302
.10.1115/1.2976447
13.
Gao
,
F.
,
Yang
,
J.
, and
Ge
,
J. Q.
,
2010
, “
Type Synthesis of Parallel Mechanisms Having the Second Class GF Sets and Two Dimensional Rotations
,”
ASME J. Mech. Rob.
,
3
(
1
), p.
011003
.10.1115/1.4002697
14.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2004
, “
Type Synthesis of Three-Degree-of-Freedom Spherical Parallel Manipulators
,”
Int. J. Rob. Res.
,
23
(
3
), pp.
237
245
.10.1177/0278364904041562
15.
Hunt
,
K. H.
,
1978
,
Kinematic Geometry of Mechanisms
,
Cambridge University Press
,
Cambridge, UK
.
16.
Zlatanov
,
D.
,
Bonev
,
I. A.
, and
Gosselin
,
C. M.
,
2002
, “
Constraint Singularities as C-Space Singularities
,”
Advances in Robot Kinematics—Theory and Applications
,
J.
Lenarċiċ
and
F.
Thomas
, eds.,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
, pp.
183
192
.
17.
Fanghella
,
P.
,
Galleti
,
C.
, and
Gianotti
,
E.
,
2006
, “
Parallel Robots That Change Their Group of Motion
,”
Advances in Robot Kinematics
,
Springer
,
The Netherlands
, pp.
49
56
.
18.
Refaat
,
S.
,
Hervé
,
J. M.
,
Nahavandi
,
S.
, and
Trinh
,
H.
,
2007
. “
Two-Mode Overconstrained Three-DOFs Rotational-Translational Linear-Motor-Based Parallel Kinematics Mechanism for Machine Tool Applications
,”
Robotica
,
25
, pp.
461
466
.10.1017/S0263574706003286
19.
Kong
,
X.
,
Gosselin
,
C.
, and
Richard
,
P. L.
,
2007
, “
Type Synthesis of Parallel Mechanisms With Multiple Operation Modes
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
595
601
.10.1115/1.2717228
20.
Li
,
Q.
, and
Hervé
,
J. M.
,
2009
, “
Parallel Mechanisms With Bifurcation of Schoenflies Motion
,”
IEEE Trans. Rob.
,
25
(
1
), pp.
158
164
.10.1109/TRO.2008.2008737
21.
Gogu
,
G.
,
2011
, “
Maximally Regular T2R1-Type Parallel Manipulators With Bifurcated Spatial Motion
,”
ASME J. Mech. Rob.
,
3
(
1
), p.
011010
.10.1115/1.4003180
22.
Gan
,
D.
,
Dai
,
J. S.
, and
Liao
,
Q.
,
2009
, “
Mobility Change in Two Types of Metamorphic Parallel Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
041007
.10.1115/1.3211023
23.
Kronig
,
L.
,
2010
, “
Overview of Biomimetics and Artiomemetics in Robotics
,” Final Year Undergraduate Project Report, Heriot-Watt University, Edinburgh, UK.
24.
Finistauri
,
A. D.
, and
Xi
,
F.
,
2013
, “
Reconfiguration Analysis of a Fully Reconfigurable Parallel Robot
,”
ASME J. Mech. Rob.
,
5
(
4
), p.
041002
.10.1115/1.4024734
25.
Mavroidis
,
C.
, and
Roth
,
B.
,
1995
, “
New and Revised Overconstrained Mechanisms
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
75
82
.10.1115/1.2826120
26.
Phillips
,
J.
,
1990
,
Freedom in Machinery: Volume 2 Screw Theory Exemplified
,
Cambridge University Press
,
Cambridge
.
27.
Kumar
,
V.
,
Waldron
,
K. J.
,
Chrikjian
,
G.
, and
Lipkin
,
H.
,
2000
,
Applications of Screw System Theory and Lie Theory to Spatial Kinematics: A Tutorial
,
2000 ASME Design Engineering Technical Conferences
,
Baltimore, MD
.
28.
Davidson
,
J. K.
, and
Hunt
,
K. H.
,
2004
,
Robots and Screw Theory: Applications of Kinematics and Statics to Robotics
,
Oxford University Press
,
New York
.
You do not currently have access to this content.