In the present paper, we expand information about the conditions for passing through Type 2 singular configurations of a parallel manipulator. It is shown that any parallel manipulator can cross the singular configurations via an optimal control permitting the favorable force distribution, i.e., the wrench applied on the end-effector by the legs and external efforts must be reciprocal to the twist along with the direction of the uncontrollable motion. The previous studies have proposed the optimal control conditions for the manipulators with rigid links and flexible actuated joints. The different polynomial laws have been obtained and validated for each examined case. The present study considers the conditions for passing through Type 2 singular configurations for the parallel manipulators with flexible links. By computing the inverse dynamic model of a general flexible parallel robot, the necessary conditions for passing through Type 2 singular configurations are deduced. The suggested approach is illustrated by a 5R parallel manipulator with flexible elements and joints. It is shown that a 16th order polynomial law is necessary for the optimal force generation. The obtained results are validated by numerical simulations carried out using the software ADAMS.

References

1.
Gosselin
,
C. M.
, and
Angeles
,
J.
, 1990, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.
2.
Zlatanov
,
D.
,
Fenton
,
R. G.
, and
Benhabib
,
B.
, 2010, “
Singularity Analysis of Mechanisms and Robots via a Velocity-Equation Model of the Instantaneous Kinematics
,” Proceedings of the 1994 IEEE International Conference on Robotics and Automation, pp.
980
991
.
3.
Zein
,
M.
,
Wenger
,
P.
, and
Chablat
,
D.
, 2007, “
Singular Curves in the Joint Space and Cusp Points of 3-RPR Parallel Manipulators
,”
Robotica
,
25
(
6
) pp.
717
724
.
4.
Zein
,
M.
,
Wenger
,
P.
, and
Chablat
,
D.
, 2008, “
Non-Singular Assembly-mode Changing Motions for 3-RPR Parallel Manipulators
,”
Mech. Mach. Theory
,
43
(
4
), pp.
480
490
.
5.
Kanaan
,
D.
,
Wenger
,
P.
,
Caro
,
S.
, and
Chablat
,
D.
, 2009, “
Singularity Analysis of Lower-Mobility Parallel Manipulators Using Grassmann-Cayley Algebra
,”
IEEE Trans. Rob. Autom.
,
25
(
5
), pp.
995
1004
.
6.
Zlatanov
,
D.
,
Bonev
,
I. A.
, and
Gosselin
,
C. M.
, 2002,
Constraint Singularities of Parallel Mechanisms
,”
IEEE International Conference on Robotics and Automation (ICRA 2002)
,
Washington
, D. C., May 11–15.
7.
Hunt
,
K. H.
, 1987, “
Special Configurations of Robot-Arms via Screw Theory
,”
Robotica
,
5
, pp.
17
22
.
8.
Merlet
,
J.-P.
, 1989, “
Singular Configurations of Parallel Manipulators and Grassmann Geometry
,”
Int. J. Robot. Res.
,
8
(
5
), pp.
45
56
.
9.
Bonev
,
I. A.
,
Zlatanov
,
D.
, and
Gosselin
,
C. M.
, 2003, “
Singularity Analysis of 3-DOF Planar Parallel Mechanisms via Screw Theory
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
573
581
.
10.
Husty
,
M.
, and
Gosselin
,
C. M.
, 2008, “
On the Singularity Surface of Planar 3-RPR Parallel Mechanisms
,”
MUSME 2008 Symposium, San Juan, Argentine
, Vol.
36
(
4
), pp.
411
425
.
11.
Bandyopadhyay
,
S.
, and
Ghosal
,
A.
, 2004, “
Analysis of Configuration Space Singularities of Closed-Loop Mechanisms and Parallel Manipulators
,”
Mech. Mach. Theory
,
39
(
5
), pp.
519
544
.
12.
Briot
,
S.
,
Bonev
,
I. A.
,
Chablat
,
D.
,
Wenger
,
P.
, and
Arakelian
,
V.
, 2008, “
Self Motions of General 3-RPR Planar Parallel Robots
,”
Int. J. Robot. Res.
,
27
(
7
), pp.
855
866
.
13.
Gosselin
,
C. M.
, 1992, “
The Optimum Design of Robotic Manipulators Using Dexterity Indices
,”
Robot. Auton. Syst.
,
9
(
4
), pp.
213
226
.
14.
Rakotomanga
,
N.
,
Chablat
,
D.
, and
Caro
,
S.
, 2008, “
Kinetostatic Performance of a Planar Parallel Mechanism With Variable Actuation
,”
11th International Symposium on Advances in Robot Kinematics
,
Kluwer Academic Publishers
,
Batz-sur-mer, France
.
15.
Merlet
,
J.-P.
, 2006, “
Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robots
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
199
206
.
16.
Angeles
,
J.
, 2007,
Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms
, 3rd ed.,
Springer
,
New York
.
17.
Alba-Gomez
,
O.
,
Wenger
,
P.
, and
Pamanes
,
A.
, 2005, “
Consistent Kinetostatic Indices for Planar 3-DOF Parallel Manipulators, Application to the Optimal Kinematic Inversion
,”
Proceedings of ASME 2005 IDETC/CIE Conference
,
Long Beach
, CA, September 24–28.
18.
Arakelian
,
V.
,
Briot
,
S.
, and
Glazunov
,
V.
, 2008, “
Increase of Singularity-Free Zones in the Workspace of Parallel Manipulators Using Mechanisms of Variable Structure
,”
Mech. Mach. Theory
,
43
(
9
), pp.
1129
1140
.
19.
Hubert
,
J.
, and
Merlet
,
J.-P.
, 2008,
Singularity Analysis Through Static Analysis, Advances in Robot Kinematics
,
Springer
,
New York
, pp.
13
20
.
20.
Ranganath
,
R.
,
Nair
,
P. S.
,
Mruthyunjaya
,
T. S.
, and
Ghosal
,
A.
, 2004, “
A Force–Torque Sensor Based on a Stewart Platform in a Near-Singular Configuration
,”
Mech. Mach. Theory
,
39
(
9
), pp.
971
998
.
21.
Alvan
,
K.
, and
Slousch
,
A.
, 2003, “
On the Control of the Spatial Parallel Manipulators With Several Degrees of Freedom
,”
Mech. Mach. Theory
,
1
, pp.
63
69
.
22.
Dasgupta
,
B.
, and
Mruthyunjaya
,
T.
, 1998, “
Force Redundancy in Parallel Manipulators: Theoretical and Practical Issues
,”
Mech. Mach. Theory
,
33
(
6
), pp.
724
742
.
23.
Glazunov
,
V.
,
Kraynev
,
A.
,
Bykov
,
R.
,
Rashoyan
,
G.
, and
Novikova
,
N.
, 2004, “
Parallel Manipulator Control While Intersecting Singular Zones
,”
Proceedings of the 15th Symposium on Theory and Practice of Robots and Manipulators (RoManSy) CISM-IFToMM
,
Montreal
.
24.
Kotlarski
,
J.
, Do
Thanh
,
T.
,
Abdellatif
,
H.
, and
Heimann
,
B.
, 2008, “
Singularity Avoidance of a Kinematically Redundant Parallel Robot by a Constrained Optimization of the Actuation Forces
,” Proceedings of the 17th CISM-IFToMM Symposium RoManSy, pp.
435
442
.
25.
Hesselbach
,
J.
,
Wrege
,
J.
,
Raatz
,
A.
, and
Becker
,
O.
, 2004, “
Aspects on the Design of High Precision Parallel Robots
,”
Assem. Autom.
,
24
(
1
), pp.
49
57
.
26.
Bhattacharya
,
S.
,
Hatwal
,
H.
, and
Ghosh
,
A.
, 1998, “
Comparison of an Exact and Approximate Method of Singularity Avoidance in Platform Type Parallel Manipulators
,”
Mech. Mach. Theory
,
33
(
7
), pp.
965
974
.
27.
Dasgupta
,
B.
, and
Mruthyunjaya
,
T.
, 1998, “
Singularity-Free Path Planning for the Steward Platform Manipulator
,”
Mech. Mach. Theory
,
33
(
6
), pp.
715
725
.
28.
Kemal Ider
,
S.
, 2005, “
Inverse Dynamics of Parallel Manipulators in the Presence of Drive Singularities
,”
Mech. Mach. Theory
,
40
, pp.
33
44
.
29.
Kevin Jui
,
C. K.
, and
Sun
,
Q.
, 2005, “
Path Tracking of Parallel Manipulators in the Presence of Force Singularity
,”
ASME J. Dyn. Syst., Meas., Control
,
127
, pp.
550
563
.
30.
Nenchev
,
D. N.
,
Bhattacharya
,
S.
, and
Uchiyama
,
M.
, 1997, “
Dynamic Analysis of Parallel Manipulators Under the Singularity-Consistent Parameterization
,”
Robotica
,
15
(
4
), pp.
375
384
.
31.
Perng
,
M. H.
, and
Hsiao
,
L.
, 1999, “
Inverse Kinematic Solutions for a Fully Parallel Robot With Singularity Robustness
,”
Int. J. Robot. Res.
,
18
(
6
), pp.
575
583
.
32.
Briot
,
S.
, and
Arakelian
,
V.
, 2008, “
Optimal Force Generation in Parallel Manipulators for Passing Through the Singular Positions
,”
Int. J. Robot. Res.
,
27
(
8
), pp.
967
983
.
33.
Briot
,
S.
,
Arakelian
,
V.
, and
Guégan
,
S.
, 2008, “
Design and Prototyping of a Partially Decoupled 4-DOF 3T1R Parallel Manipulator with High-Load Carrying Capacity
,”
ASME J. Mech. Des.
,
130
(
12
), p.
122303
.
34.
Briot
,
S.
, and
Arakelian
,
V.
, 2010, “
On the Dynamic Properties of Flexible Parallel Manipulators in the Presence of Payload and Type 2 Singularities
,”
ASME Conf. Proc.
,
2
, pp.
1475
1481
.
35.
Bouzgarrou
,
B. C.
,
Ray
,
P.
, and
Gogu
,
G.
, 2005, “
New Approach for Dynamic Modelling of Flexible Manipulators
,”
Proc. IMechE, Part K: J. Multibody Dyn.
,
219
, pp.
285
298
.
36.
Khalil
,
W.
, and
Guegan
,
S.
, 2002, “
A Novel Solution for the Dynamic Modeling of Gough-Stewart Manipulators
,”
Proceedings IEEE International Conference on Robotics and Automation
,
Washington
, DC, May 11–15.
37.
J.-P.
Merlet
, Parallel Robots, Springer, 2nd edition, 2006.
38.
Boyer
,
F.
, and
Khalil
,
W.
, 1996, “
Simulation of Flexible Manipulators Using Newton-Euler Inverse Dynamic Model
,”
Proceedings of the 1996 IEEE International Conference on Robotics and Automation
,
Minneapolis
, MN.
39.
Spong
,
M. W.
,
Khorasani
,
K.
, and
Kokotovic
,
P. V.
, 1987, “
An Integral Manifold Approach to the Feedback Control of Flexible Joint Robots
,”
IEEE J. Rob. Autom.
,
3
(
4
), pp.
291
300
.
40.
Liu
,
X.-J.
,
Wang
,
J.
, and
Pritschow
,
G.
, 2006, “
Kinematics, Singularity and Workspace of Planar 5R Symmetrical Parallel Mechanism
,”
Mech. Mach. Theory
,
41
(
2
), pp.
119
144
.
41.
Fleming
,
P. J.
, and
Pashkevich
,
A.
, 1985, “
Computer Aided Control System Design Using a Multi-Objective Optimisation Approach
,”
Control 1985 Conference
,
Cambridge
, UK, pp.
174
179
.
You do not currently have access to this content.