With the introduction of generalized function sets (GF set) to represent the characteristics of the end-effectors of parallel mechanisms, two classes of GF sets are proposed. The type synthesis of parallel mechanisms having the second class GF sets and two dimensional rotations, including 2-, 3-, and 4DOF parallel mechanisms, is investigated. First, the intersection algorithms for the GF sets are established via the axiom of two dimensional rotations. Second, the kinematic limbs with specific characteristics are designed according to the axis movement theorem. Finally, several parallel mechanisms having the second class GF sets and two dimensional rotations have been illustrated to show the effectiveness of the proposed methodology.

1.
Gosselin
,
C. M.
, and
Caron
,
F.
, 1999, “
Two Degree-of-Freedom Spherical Orienting Device
,” U.S. Patent No. 5,966,991.
2.
Carricato
,
M.
, and
Parenti-Castelli
,
V.
, 2004, “
A Novel Fully Decoupled Two-Degrees-of-Freedom Parallel Wrist
,”
Int. J. Robot. Res.
0278-3649,
23
(
6
), pp.
661
667
.
3.
Zeng
,
D.
,
Huang
,
Z.
, and
Lu
,
W.
, 2007, “
A Family of Novel 2DOF Rotational Decoupled Parallel Mechanisms
,”
Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation
, Harbin, China, Aug. 5–8, pp.
2478
2483
.
4.
Gogu
,
G.
, 2005, “
Fully-Isotropic Over-Constrained Parallel Wrists With Two Degrees of Freedom
,”
Proceedings of the 2005 IEEE International Conference on Robotics and Automation
, Barcelona, Spain, Apr. 18–22, pp.
4025
4030
.
5.
Hervé
,
J. M.
, 2006, “
Uncoupled Actuation of Pan-Tilt Wrists
,”
IEEE Trans. Rob. Autom.
1042-296X,
22
(
1
), pp.
56
64
.
6.
Fan
,
C. F.
,
Liu
,
H. Z.
, and
Zhang
,
Y. B.
, 2009, “
Kinematics and Singularity Analysis of a Novel 1T2R Fully-Decoupled Parallel Mechanism
,”
IEEE International Conference on Intelligent Computing and Intelligent Systems
, Shanghai, China, Nov. 20–22, pp.
312
316
.
7.
Liu
,
X. J.
, and
Wang
,
J. S.
, 2003, “
Some New Parallel Mechanisms Containing the Planar Four-Bar Parallelogram
,”
Int. J. Robot. Res.
0278-3649,
22
(
9
), pp.
717
732
.
8.
Gogu
,
G.
, 2009, “
Structural Synthesis of Maximally Regular t3r2-Type Parallel Robots via Theory of Linear Transformations and Evolutionary Morphology
,”
Robotica
0263-5747,
27
(
1
), pp.
79
101
.
9.
Gao
,
F.
,
Li
,
W.
,
Zhao
,
X.
,
Jin
,
Z.
, and
Zhao
,
H.
, 2002, “
New Kinematic Structures for 2-, 3-, 4-, and 5-DOF Parallel Manipulator Designs
,”
Mech. Mach. Theory
0094-114X,
37
(
11
), pp.
1395
1411
.
10.
Fang
,
Y.
, and
Tsai
,
L. -W.
, 2002, “
Structure Synthesis of a Class of 4-DoF and 5-DoF Parallel Manipulators With Identical Limb Structures
,”
Int. J. Robot. Res.
0278-3649,
21
(
9
), pp.
799
810
.
11.
Earl
,
C. F.
, and
Rooney
,
J.
, 1983, “
Some Kinematics Structures for Robot Manipulator Designs
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
105
(
1
), pp.
15
22
.
12.
Lu
,
Y.
,
Ding
,
L.
, and
Yu
,
J.
, 2010, “
Autoderivation of Topological Graphs for Type Synthesis of Planar 3DOF Parallel Mechanisms
,”
ASME J. Mech. Rob.
1942-4302,
2
(
1
), p.
011002
.
13.
Hervé
,
J. M.
, 1999, “
The Lie Group of Rigid Body Displacements, a Fundamental Tool for Mechanism Design
,”
Mech. Mach. Theory
0094-114X,
34
(
5
), pp.
719
730
.
14.
Hervé
,
J. M.
, 2003, “
The Planar-Spherical Kinematic Bond: Implementation in Parallel Mechanisms
,” http://www.parallemic.org/Reviews/Review013.htmlhttp://www.parallemic.org/Reviews/Review013.html
15.
Meng
,
J.
,
Liu
,
G.
, and
Li
,
Z.
, 2007, “
A Geometric Theory for Analysis and Synthesis of Sub-6 DOF Parallel Manipulators
,”
IEEE Trans. Rob. Autom.
1042-296X,
23
(
4
), pp.
625
649
.
16.
Li
,
Q.
, and
Hervé
,
J. M.
, 2009, “
Structural Shakiness of Nonoverconstrained Translational Parallel Mechanisms With Identical Limbs
,”
IEEE Trans. Rob. Autom.
1042-296X,
25
(
1
), pp.
25
36
.
17.
Li
,
Q. C.
, and
Hervé
,
J. M.
, 2010, “
1T2R Parallel Mechanisms Without Parasitic Motion
,”
IEEE Trans. Rob. Autom.
1042-296X,
26
(
3
), pp.
401
410
.
18.
Yu
,
J. J.
,
Dai
,
J. S.
,
Bi
,
S. S.
, and
Zong
,
G. H.
, 2010, “
Type Synthesis of a Class of Spatial Lower-Mobility Parallel Mechanisms With Orthogonal Arrangement Based on Lie Group Enumeration
,”
Sci. China, Ser. E: Technol. Sci.
1006-9321,
53
(
2
), pp.
388
404
.
19.
Zeng
,
Q.
, and
Fang
,
Y.
, 2009, “
Structural Synthesis of Serial-Parallel Hybrid Mechanisms Based on Representation and Operation of Logical Matrix
,”
ASME J. Mech. Rob.
1942-4302,
1
(
1
), p.
041003
.
20.
Huang
,
Z.
, and
Li
,
Q. C.
, 2002, “
General Methodology for Type Synthesis of Symmetrical Lower-Mobility Parallel Manipulators and Several Novel Manipulators
,”
Int. J. Robot. Res.
0278-3649,
21
(
2
), pp.
131
145
.
21.
Huang
,
Z.
, and
Li
,
Q. C.
, 2003, “
Type Synthesis of Symmetrical Lower-Mobility Parallel Mechanisms Using the Constraint-Synthesis Method
,”
Int. J. Robot. Res.
0278-3649,
22
(
1
), pp.
59
79
.
22.
Kong
,
X.
, and
Gosselin
,
C. M.
, 2006, “
Type Synthesis of 3-DOF UP-Equivalent Parallel Manipulators Using a Virtual Chain Approach
,”
Advances in Robot Kinematics
,
B.
Roth
, ed.,
Springer
,
The Netherlands
, pp.
123
132
.
23.
Kong
,
X.
, and
Gosselin
,
C. M.
, 2004, “
Type Synthesis of 3-DOF Spherical Parallel Manipulators Based on Screw Theory
,”
ASME J. Mech. Des.
0161-8458,
126
(
1
), pp.
101
108
.
24.
Yang
,
T. L.
,
Liu
,
A. -X.
, and
Jin
,
Q.
, 2009, “
Position and Orientation Characteristic Equation for Topological Design of Robot Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
131
(
2
), p.
021001
.
25.
Angeles
,
J.
, 2004, “
The Qualitative Synthesis of Parallel Manipulators
,”
ASME J. Mech. Des.
0161-8458,
126
(
4
), pp.
617
624
.
26.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
, 2006, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
128
(
1
), pp.
220
229
.
You do not currently have access to this content.