In conventional imitation control, optical tracking devices have been widely adopted to capture human motion and control robots in a laboratory environment. Wearable sensors are attracting extensive interest in the development of a lower-cost human-robot control system without constraints from stationary motion analysis devices. We propose an ambulatory human motion analysis system based on small inertial sensors to measure body segment orientations in real time. A new imitation control method was developed and applied to a biped robot using data of human joint angles obtained from a wearable sensor system. An experimental study was carried out to verify the method of synchronous imitation control for a biped robot. By comparing the results obtained from direct imitation control with an improved method based on a training algorithm, which includes a personal motion pattern, we found that the accuracy of imitation control was markedly improved and the tri-axial average errors of x-y- and z-moving displacements related to leg length were 12%, 8% and 4%, respectively. Experimental results support the feasibility of the proposed control method.

1.
Azad
,
P.
,
Asfour
,
T.
, and
Dillmann
,
R.
, 2007, “
Stereo-Based 6D Object Localization for Grasping With Humanoid Robot Systems
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
.
2.
Dillmann
,
R.
, 2004, “
Teaching and Learning of Robot Tasks Via Observation of Human Performance
,”
Robot. Auton. Syst.
,
47
, pp.
109
116
.
3.
Asfour
,
T.
,
Azad
,
P.
,
Vahrenkamp
,
N.
,
Regenstein
,
K.
,
Bierbaum
,
A.
,
Welke
,
K.
,
Schröder
,
J.
, and
Dillmann
,
R.
, 2008, “
Toward Humanoid Manipulation in Human-Centered Environments
,”
Robot. Auton. Syst.
,
56
, pp.
54
65
.
4.
Allison
,
B.
,
Nejat
,
G.
, and
Kao
,
E.
, 2009, “
The Design of an Expressive Humanlike Socially Assistive Robot
,”
ASME J. Mech. Rob.
1942-4302,
1
, p.
011001
.
5.
Nishiwaki
,
K.
,
Sugihara
,
T.
,
Kagami
,
S.
,
Kanehiro
,
F.
,
Inaba
,
M.
, and
Inoue
,
H.
, 2000, “
Design and Development of Research Platform for Perceptionaction Integration in Humanoid Robots: H6
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
, pp.
1559
1564
.
6.
Sakagami
,
S.
,
Watanabe
,
T.
,
Aoyama
,
C.
,
Matsunage
,
S.
,
Higaki
,
N.
, and
Fujimura
,
K.
, 2002, “
The Intelligent ASIMO: System Overview and Integration
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
, pp.
2478
2483
.
7.
Cheng
,
G.
,
Hyon
,
S.
,
Morimoto
,
J.
,
Ude
,
A.
, and
Jacobsen
,
S.
, 2006, “
A Humanoid Research Platform for Exploring Neuroscience
,”
Proceedings of the IEEE/RAS International Conference on Humanoid Robots
.
8.
Park
,
J. L. I. W.
,
Kim
,
J. Y.
, and
Oh
,
J.
, 2005, “
Mechanical Design of Humanoid Robot Platform KHR-3 (KAIST Humanoid Robot-3: HUBO
,”
Proceedings of the IEEE/RAS International Conference on Humanoid Robots
.
9.
Montesano
,
L.
,
Lopes
,
M.
,
Bernardino
,
A.
, and
Santos-Victor
,
J.
, 2008, “
Learning Object Affordances: From Sensory-Motor Coordination to Imitation
,”
IEEE Trans. Rob. Autom.
1042-296X,
24
, pp.
15
26
.
10.
Alissandrakis
,
A.
,
Nehaniv
,
C. L.
, and
Dautenhahn
,
K.
, 2007, “
Correspondence Mapping Induced State and Action Metrics for Robotic Imitation
,”
IEEE Trans. Syst., Man, Cybern., Part B: Cybern.
1083-4419,
37
(
2
), pp.
299
307
.
11.
Alissandrakis
,
A.
,
Nehaniv
,
C. L.
,
Dautenhahn
,
K.
, and
Saunders
,
J.
, 2005, “
An Approach for Programming Robots by Demonstration to Manipulate Objects: Considerations on Metrics to Achieve Corresponding Effects
,”
Proceedings of the Sixth IEEE International Symposium CIRA
, pp.
61
66
.
12.
Alissandrakis
,
A.
,
Nehaniv
,
C. L.
, and
Dautenhahn
,
K.
, 2002, “
Imitation With ALICE: Learning to Imitate Corresponding Actions Across Dissimilar Embodiments
,”
IEEE Trans. Syst. Man Cybern., Part A. Syst. Humans
1083-4427,
32
(
4
), pp.
482
496
.
13.
Ferreira
,
J. P.
,
Crisostomo
,
M. M.
, and
Coimbra
,
A. P.
, 2009, “
Human Gait Acquisition and Characterization
,”
IEEE Trans. Instrum. Meas.
0018-9456,
58
(
9
), pp.
2979
2988
.
14.
Ude
,
A.
,
Atkeson
,
C. G.
, and
Riley
,
M.
, 2004, “
Programming Full-Body Movements for Humanoid Robots by Observation
,”
Robot. Auton. Syst.
,
47
(
2–3
), pp.
93
108
.
15.
Liu
,
T.
,
Inoue
,
Y.
,
Shibata
,
K.
, and
Morioka
,
H.
, 2006, “
Development of Wearable Sensor Combinations for Human Lower Extremity Motion Analysis
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
1655
1660
.
16.
Liu
,
T.
,
Inoue
,
Y.
, and
Shibata
,
K.
, 2009, “
Development of a Wearable Sensor System for Quantitative Gait Analysis
,”
Measurement
0263-2241,
42
(
7
), pp.
978
988
.
17.
Vukobratovic
,
M.
,
Borovac
,
B.
,
Surla
,
D.
, and
Stokic
,
D.
, 1990,
Biped Locomotion—Dynamics, Stability, Control and Application
,
Springer-Verlag
,
Berlin
.
You do not currently have access to this content.