Abstract

Valves play a critical role in regulating flow, preventing backflow, and controlling pressure in hydro-pneumatic systems. However, most existing valves are based on rigid metallic components, which significantly restrict their applicability in biomedical fields and safe human–machine interactions. In this study, we introduce an innovative soft valve mechanism that integrates shape-memory alloy (SMA) wire with a circular hydrogel matrix, tailored for applications in cuff gripping and fluid flow control. Our hydrogel-encapsulated shape-memory annular (HESA) valve demonstrates the ability to transition between relaxed and contracted states within a rapid 8 s timeframe, exerting a force of approximately 15 mN and achieving up to 20% flow control efficiency. Although hydrogels can dehydrate and degrade over multiple actuation cycles, the HESA can be easily rehydrated to restore its initial performance and maintain significant stretchability. We demonstrate enhanced fluid control performance through the use of serially arranged HESA valves that offer a scalable solution for complex fluid management systems. In addition, we developed a real-time monitoring approach for hydrogel-based soft actuators using resistance changes (ΔR/R0) measured via an LCR meter, enabling precise performance tracking and timely rehydration to maintain functionality over extended actuation cycles. This innovative approach ensures sustained functionality and efficiency, underscoring the potential of the HESA valve for a variety of biomedical applications, including precise drug delivery systems, minimally invasive surgical tools, and advanced prosthetics.

References

1.
Polygerinos
,
P.
,
Correll
,
N.
,
Morin
,
S. A.
,
Mosadegh
,
B.
,
Onal
,
C. D.
,
Petersen
,
K.
,
Cianchetti
,
M.
,
Tolley
,
M. T.
, and
Shepherd
,
R. F.
,
2017
, “
Soft Robotics: Review of Fluid-Driven Intrinsically Soft Devices; Manufacturing, Sensing, Control, and Applications in Human–Robot Interaction
,”
Adv. Eng. Mater.
,
19
(
12
), p.
1700016
.
2.
Tolley
,
M. T.
,
Shepherd
,
R. F.
,
Mosadegh
,
B.
,
Galloway
,
K. C.
,
Wehner
,
M.
,
Karpelson
,
M.
,
Wood
,
R. J.
, and
Whitesides
,
G. M.
,
2014
, “
A Resilient, Untethered Soft Robot
,”
Soft Rob.
,
1
(
3
), pp.
213
223
.
3.
Napp
,
N.
,
Araki
,
B.
,
Tolley
,
M. T.
,
Nagpal
,
R.
, and
Wood
,
R. J.
,
2014
, “
Simple Passive Valves for Addressable Pneumatic Actuation
,”
2014 IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
May 31–June 7
,
IEEE
, pp.
1440
1445
.
4.
Marchese
,
A. D.
,
Onal
,
C. D.
, and
Rus
,
D.
,
2011
, “
Soft Robot Actuators Using Energy-Efficient Valves Controlled by Electropermanent Magnets
,”
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
,
Sept. 25–30
,
IEEE
, pp.
756
761
.
5.
Mosadegh
,
B.
,
Mazzeo
,
A. D.
,
Shepherd
,
R. F.
,
Morin
,
S. A.
,
Gupta
,
U.
,
Sani
,
I. Z.
,
Lai
,
D.
,
Takayama
,
S.
, and
Whitesides
,
G. M.
,
2014
, “
Control of Soft Machines Using Actuators Operated by a Braille Display
,”
Lab Chip
,
14
(
1
), pp.
189
199
.
6.
Mosadegh
,
B.
,
Kuo
,
C.-H.
,
Tung
,
Y.-C.
,
Torisawa
,
Y.-S.
,
Bersano-Begey
,
T.
,
Tavana
,
H.
, and
Takayama
,
S.
,
2010
, “
Integrated Elastomeric Components for Autonomous Regulation of Sequential and Oscillatory Flow Switching in Microfluidic Devices
,”
Nat. Phys.
,
6
(
6
), pp.
433
437
.
7.
Rhee
,
M.
, and
Burns
,
M. A.
,
2009
, “
Microfluidic Pneumatic Logic Circuits and Digital Pneumatic Microprocessors for Integrated Microfluidic Systems
,”
Lab Chip
,
9
(
21
), pp.
3131
3143
.
8.
Unger
,
M. A.
,
Chou
,
H.-P.
,
Thorsen
,
T.
,
Scherer
,
A.
, and
Quake
,
S. R.
,
2000
, “
Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography
,”
Science
,
288
(
5463
), pp.
113
116
.
9.
Banerjee
,
H.
,
Sivaperuman Kalairaj
,
M.
,
Ren
,
H.
, and
Jusufi
,
A.
,
2021
, “
Strong, Ultrastretchable Hydrogel-Based Multilayered Soft Actuator Composites Enhancing Biologically Inspired Pumping Systems
,”
Adv. Eng. Mater.
,
23
(
10
), p.
2100121
.
10.
Banerjee
,
H.
,
Suhail
,
M.
, and
Ren
,
H.
,
2018
, “
Hydrogel Actuators and Sensors for Biomedical Soft Robots: Brief Overview With Impending Challenges
,”
Biomimetics
,
3
(
3
), p.
15
.
11.
Li
,
J.
, and
Mooney
,
D. J.
,
2016
, “
Designing Hydrogels for Controlled Drug Delivery
,”
Nat. Rev. Mater.
,
1
(
12
), pp.
1
17
.
12.
Lewis
,
K. J.
, and
Anseth
,
K. S.
,
2013
, “
Hydrogel Scaffolds to Study Cell Biology in Four Dimensions
,”
MRS Bull./Mater. Res. Soc.
,
38
(
3
), p.
260
.
13.
Lendlein
,
A.
, and
Gould
,
O. E.
,
2019
, “
Reprogrammable Recovery and Actuation Behaviour of Shape-Memory Polymers
,”
Nat. Rev. Mater.
,
4
(
2
), pp.
116
133
.
14.
Ahn
,
S.-k.
,
Kasi
,
R. M.
,
Kim
,
S.-C.
,
Sharma
,
N.
, and
Zhou
,
Y.
,
2008
, “
Stimuli-Responsive Polymer Gels
,”
Soft Matter
,
4
(
6
), pp.
1151
1157
.
15.
Banerjee
,
H.
,
Kakde
,
S.
, and
Ren
,
H.
,
2018
, “
Orumbot: Origami-Based Deformable Robot Inspired by an Umbrella Structure
,”
2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), IEEE
,
Kuala Lumpur, Malaysia
,
Dec. 12–15
.
16.
Wang
,
J.
,
Chen
,
Z.
,
Mauk
,
M.
,
Hong
,
K.-S.
,
Li
,
M.
,
Yang
,
S.
, and
Bau
,
H. H.
,
2005
, “
Self-Actuated, Thermo-responsive Hydrogel Valves for Lab on a Chip
,”
Biomed. Microdevices
,
7
(
4
), pp.
313
322
.
17.
Huang
,
X.
,
Ford
,
M.
,
Patterson
,
Z. J.
,
Zarepoor
,
M.
,
Pan
,
C.
, and
Majidi
,
C.
,
2020
, “
Shape Memory Materials for Electrically-Powered Soft Machines
,”
J. Mater. Chem. B
,
8
(
21
), pp.
4539
4551
.
18.
Huang
,
X.
,
Kumar
,
K.
,
Jawed
,
M. K.
,
Mohammadi Nasab
,
A.
,
Ye
,
Z.
,
Shan
,
W.
, and
Majidi
,
C.
,
2019
, “
Highly Dynamic Shape Memory Alloy Actuator for Fast Moving Soft Robots
,”
Adv. Mater. Technol.
,
4
(
4
), p.
1800540
.
19.
Zhang
,
J. L.
,
Huang
,
W. M.
,
Gao
,
G.
,
Fu
,
J.
,
Zhou
,
Y.
,
Salvekar
,
A. V.
,
Venkatraman
,
S. S.
,
Wong
,
Y. S.
,
Tay
,
K. H.
, and
Birch
,
W. R.
,
2014
, “
Shape Memory/Change Effect in a Double Network Nanocomposite Tough Hydrogel
,”
Eur. Polym. J.
,
58
, pp.
41
51
.
20.
Huang
,
X.
,
Kumar
,
K.
,
Jawed
,
M. K.
,
Nasab
,
A. M.
,
Ye
,
Z.
,
Shan
,
W.
, and
Majidi
,
C.
,
2018
, “
Chasing Biomimetic Locomotion Speeds: Creating Untethered Soft Robots With Shape Memory Alloy Actuators
,”
Sci. Rob.
,
3
(
25
), p.
eaau7557
.
21.
Siddall
,
R.
,
Fukushima
,
T.
,
Bardhi
,
D.
,
Perteshoni
,
B.
,
Morina
,
A.
,
Hasimja
,
E.
,
Dujaka
,
Y.
, et al.,
2021
, “
Compliance, Mass Distribution and Contact Forces in Cursorial and Scansorial Locomotion With Biorobotic Physical Models
,”
Adv. Rob.
,
35
(
7
), pp.
437
449
.
22.
Banerjee
,
H.
,
Sivaperuman Kalairaj
,
M.
,
Chang
,
T.-H.
,
Fu
,
F.
,
Chen
,
P.-Y.
, and
Ren
,
H.
,
2022
, “
Highly Stretchable Flame-Retardant Skin for Soft Robotics With Hydrogel–Montmorillonite-Based Translucent Matrix
,”
Soft Rob.
,
9
(
1
), pp.
98
118
.
23.
Song
,
S.-H.
,
Lee
,
J.-Y.
,
Rodrigue
,
H.
,
Choi
,
I.-S.
,
Kang
,
Y. J.
, and
Ahn
,
S.-H.
,
2016
, “
35 Hz Shape Memory Alloy Actuator With Bending-Twisting Mode
,”
Sci. Rep.
,
6
(
1
), p.
21118
.
24.
Kalairaj
,
M. S.
,
Yeow
,
B. S.
,
Lim
,
C. M.
, and
Ren
,
H.
,
2020
, “
Nitinol Actuated Soft Structures Towards Transnasal Drug Delivery: A Pilot Cadaver Study
,”
Med. Biol. Eng. Comput.
,
58
(
3
), pp.
611
623
.
25.
Kalairaj
,
M. S.
,
Yeow
,
B. S.
,
Lim
,
C. M.
, and
Ren
,
H.
,
2020
, “
Needle-Size Bending Actuators Based on Controlled Nitinol Curvatures and Elastic Structures
,”
ASME J. Mech. Rob.
,
12
(
3
), p.
031015
.
26.
Kalairaj
,
M. S.
,
Banerjee
,
H.
,
Kumar
,
K. S.
,
Lopez
,
K. G.
, and
Ren
,
H.
,
2021
, “
Thermo-Responsive Hydrogel-Based Soft Valves With Annular Actuation Calibration and Circumferential Gripping
,”
Bioengineering
,
8
(
9
), p.
127
.
27.
Kalairaj
,
M. S.
,
Banerjee
,
H.
,
Lim
,
C. M.
,
Chen
,
P.-Y.
, and
Ren
,
H.
,
2019
, “
Hydrogel-Matrix Encapsulated Nitinol Actuation With Self-Cooling Mechanism
,”
RSC Adv.
,
9
(
59
), pp.
34244
34255
.
28.
Li
,
M.
,
Wang
,
X.
,
Dong
,
B.
, and
Sitti
,
M.
,
2020
, “
In-Air Fast Response and High Speed Jumping and Rolling of a Light-Driven Hydrogel Actuator
,”
Nat. Commun.
,
11
(
1
), pp.
1
10
.
29.
Li
,
T.
,
Pan
,
A.
, and
Ren
,
H.
,
2020
, “
Reaction Force Mapping by 3-Axis Tactile Sensing With Arbitrary Angles for Tissue Hard-Inclusion Localization
,”
IEEE Trans. Biomed. Eng.
,
68
(
1
), pp.
26
35
.
30.
Li
,
T.
,
Shi
,
C.
, and
Ren
,
H.
,
2018
, “
Three-Dimensional Catheter Distal Force Sensing for Cardiac Ablation Based on Fiber Bragg Grating
,”
IEEE/ASME Trans. Mechatron.
,
23
(
5
), pp.
2316
2327
.
31.
Li
,
T.
,
Shi
,
C.
, and
Ren
,
H.
,
2018
, “
A High-Sensitivity Tactile Sensor Array Based on Fiber Bragg Grating Sensing for Tissue Palpation in Minimally Invasive Surgery
,”
IEEE/ASME Trans. Mechatron.
,
23
(
5
), pp.
2306
2315
.
You do not currently have access to this content.