Abstract

Respiratory assistance is of significant importance for achieving pulmonary rehabilitation in individuals with weakened respiratory muscles. Soft actuators have great potential in rehabilitation application; yet, there is little research on soft respiratory rehabilitation robots. This article presents a novel bidirectional asymmetric accordion-type soft robot capable of generating chest expansion and contraction actions, designed for respiratory assistance training in patients with respiratory muscle weakness. The robot consists of two bidirectional asymmetric accordion-type pneumatic actuators (APA), each composed of a primary accordion-type pneumatic actuator (PAPA) and a subordinate accordion-type pneumatic actuator (SAPA), capable of providing torque to the human body to facilitate auxiliary expansion and contraction of the patient’s chest. A kinematic model is developed to couple the angular movements of the human arm with the actuator by analyzing their angular relationships. By modeling the airbags of actuators as compressed spheres and simplifying the contact areas, the effective angle can be calculated at the specified pressure and output torque, thereby selecting the optimal geometric parameters of PAPA and SAPA to ensure that the desired angle is achieved for lifting the arm. Experimental validation confirmed the accuracy of the proposed kinematic coupled model and output torque of PAPA. The robot’s efficacy in respiratory training was assessed by comparing volume flowrate (VFR) and moving air volume (MAV) between ten healthy participants with and without robot assistance. The experimental results show that the average improvement rates of exhalation VFR, inhalation VFR, and MAV of the 10 participants are 154%, 148%, and 155%, which demonstrated the robot’s capability to enhance respiratory function.

References

1.
Labaki
,
W. W.
, and
Han
,
M. K.
,
2020
, “
Chronic Respiratory Diseases: A Global View
,”
Lancet Respir. Med.
,
8
(
6
), pp.
531
533
.
2.
Singh
,
A.
,
Prakash
,
N.
, and
Jain
,
A.
,
2023
, “
A Review on Prevalence of Worldwide COPD Situation
,”
Proceedings of Data Analytics and Management: ICDAM 2022
,
Singapore
,
Mar. 25
, pp.
391
405
.
3.
Chiu
,
K.-L.
,
Hsieh
,
P.-C.
,
Wu
,
C.-W.
,
Tzeng
,
I.-S.
,
Wu
,
Y.-K.
, and
Lan
,
C.-C.
,
2020
, “
Exercise Training Increases Respiratory Muscle Strength and Exercise Capacity in Patients with Chronic Obstructive Pulmonary Disease and Respiratory Muscle Weakness
,”
Heart Lung
,
49
(
5
), pp.
556
563
.
4.
Huang
,
D.
,
Zhao
,
W.
,
Chen
,
Y.
,
Shen
,
B.
,
Wang
,
Y.
,
Guan
,
H.
, and
Luo
,
W.
,
2021
, “
Effect of Mechanical Ventilation and Pulmonary Rehabilitation in Patients With ICU-Acquired Weakness: A Systematic Review and Meta-Analysis
,”
Ann. Palliat. Med.
,
10
(
9
), pp.
9594
9606
.
5.
Smith
,
J. R.
, and
Taylor
,
B. J.
,
2022
, “
Inspiratory Muscle Weakness in Cardiovascular Diseases: Implications for Cardiac Rehabilitation
,”
Prog. Cardiovasc. Dis.
,
70
, pp.
49
57
.
6.
De Troyer
,
A.
, and
Boriek
,
A. M.
,
2011
, “
Mechanics of the Respiratory Muscles
,”
Compr. Physiol.
,
1
(
3
), pp.
1273
1300
.
7.
Lee
,
S.-Y.
,
Hahn
,
J.-O.
,
Beom
,
J.
,
Park
,
J.-H.
,
Cho
,
H. E.
,
Kang
,
S.-W.
, and
Cho
,
K.-J.
,
2022
, “
Exo-abs: A Wearable Robotic System Inspired by Human Abdominal Muscles for Noninvasive and Effort-Synchronized Respiratory Assistance
,”
IEEE Trans. Robot.
,
38
(
5
), pp.
2994
3014
.
8.
Zhu
,
Z.
,
Cong
,
B.
,
Liu
,
F.
,
Liu
,
T.
,
Yi
,
J.
, and
Inoue
,
Y.
,
2015
, “
Design of Respiratory Training Robot in Rehabilitation of Chronic Obstructive Pulmonary Disease
,”
2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)
,
Busan, South Korea
,
July 7–11
, IEEE, pp.
866
870
.
9.
Xu
,
P.
,
Li
,
J.
,
Li
,
S.
,
Xia
,
D.
,
Zeng
,
Z.
,
Yang
,
N.
, and
Xie
,
L.
,
2022
, “
Design and Evaluation of a Parallel Cable-Driven Shoulder Mechanism With Series Springs
,”
ASME J. Mech. Rob.
,
14
(
3
), p.
031012
.
10.
Galiana
,
I.
,
Hammond
,
F. L.
,
Howe
,
R. D.
, and
Popovic
,
M. B.
,
2012
, “
Wearable Soft Robotic Device for Post-Stroke Shoulder Rehabilitation: Identifying Misalignments
,”
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vilamoura-Algarve, Portugal
,
Oct. 7–12
, IEEE, pp.
317
322
.
11.
O’Neill
,
C. T.
,
McCann
,
C. M.
,
Hohimer
,
C. J.
,
Bertoldi
,
K.
, and
Walsh
,
C. J.
,
2022
, “
Unfolding Textile-Based Pneumatic Actuators for Wearable Applications
,”
Soft Robot.
,
9
(
1
), pp.
163
172
.
12.
O’Neill
,
C. T.
,
Phipps
,
N. S.
,
Cappello
,
L.
,
Paganoni
,
S.
, and
Walsh
,
C. J.
,
2017
, “
A Soft Wearable Robot for the Shoulder: Design, Characterization, and Preliminary Testing
,”
2017 International Conference on Rehabilitation Robotics (ICORR)
,
London, UK
,
July 17–20
, IEEE, pp.
1672
1678
.
13.
Sridar
,
S.
,
Veale
,
A. J.
,
Sartori
,
M.
, and
van der Kooij
,
H.
,
2023
, “
Exploiting a Simple Asymmetric Pleating Method to Realize a Textile Based Bending Actuator
,”
IEEE Robot. Autom. Lett.
,
8
(
3
), pp.
1794
1801
.
14.
Fang
,
J.
,
Yuan
,
J.
,
Wang
,
M.
,
Xiao
,
L.
,
Yang
,
J.
,
Lin
,
Z.
,
Xu
,
P.
, and
Hou
,
L.
,
2020
, “
Novel Accordion-Inspired Foldable Pneumatic Actuators for Knee Assistive Devices
,”
Soft Robot.
,
7
(
1
), pp.
95
108
.
15.
Pedaran
,
A.
,
Zareinejad
,
M.
,
Talebi
,
H. A.
,
Soleimanifar
,
M.
,
Ahmadjou
,
A.
, and
Ashoori
,
M.
,
2022
, “
Design and Implementation Soft Robotic Rehabilitation Device for Ankle Motion Exercises
,”
2022 10th RSI International Conference on Robotics and Mechatronics (ICRoM)
,
Tehran, Iran
,
Nov. 22–24
, IEEE, pp.
317
322
.
16.
Thalman
,
C. M.
,
Lam
,
Q. P.
,
Nguyen
,
P. H.
,
Sridar
,
S.
, and
Polygerinos
,
P.
,
2018
, “
A Novel Soft Elbow Exosuit to Supplement Bicep Lifting Capacity
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
, IEEE, pp.
6965
6971
.
17.
Kabir
,
P.
,
Zareinejad
,
M.
,
Talebi
,
H. A.
,
Soleimanifar
,
M.
,
Mavajian
,
M.
, and
Ashoori
,
M.
,
2022
, “
Development and Evaluation of a Soft Wearable Knee Rehabilitation Apparatus
,”
2022 10th RSI International Conference on Robotics and Mechatronics (ICRoM)
,
Tehran, Iran
,
Nov. 22–24
, IEEE, pp.
159
164
.
18.
Nguyen
,
P. H.
, and
Zhang
,
W.
,
2020
, “
Design and Computational Modeling of Fabric Soft Pneumatic Actuators for Wearable Assistive Devices
,”
Sci. Rep.
,
10
(
1
), p.
9638
.
19.
Yang
,
D.
,
Feng
,
M.
, and
Gu
,
G.
,
2024
, “
High-Stroke, High-Output-Force, Fabric-Lattice Artificial Muscles for Soft Robots
,”
Adv. Mater.
,
36
(
2
), p.
2306928
.
20.
Su
,
M.
,
Qiu
,
Y.
,
Chen
,
H.
,
Huang
,
C.
,
Guan
,
Y.
, and
Zhu
,
H.
,
2023
, “
Design, Modeling, and Application of Reinforced-Airbag-Based Pneumatic Actuators With High Load and Cellular Rearrangement
,”
Soft Robot.
,
10
(
6
), pp.
1083
1098
.
21.
Liang
,
X.
,
Cheong
,
H.
,
Chui
,
C. K.
, and
Yeow
,
C.-H.
,
2019
, “
A Fabric-Based Wearable Soft Robotic Limb
,”
ASME J. Mech. Rob.
,
11
(
3
), p.
031003
.
22.
Natividad
,
R.
,
Del Rosario, Jr.
,
M.
,
Chen
,
P. C.
, and
Yeow
,
C.-H.
,
2018
, “
A Reconfigurable Pneumatic Bending Actuator With Replaceable Inflation Modules
,”
Soft Robot.
,
5
(
3
), pp.
304
317
.
23.
Isabe
,
K.
,
Hirakawa
,
M.
, and
Suzuki
,
K.
,
2023
, “
A Soft Wearable Robot to Support Scapular Adduction and Abduction for Respiratory Rehabilitation
,”
2023 IEEE International Conference on Soft Robotics (RoboSoft)
,
Singapore
,
Apr. 3–7
, IEEE, pp.
1
6
.
24.
Zhang
,
Y.
,
Ge
,
Q.
,
Wang
,
Z.
,
Qin
,
Y.
,
Wu
,
Y.
,
Wang
,
M.
, and
Shi
,
M.
,
2024
, “
Extracorporeal Closed-Loop Respiratory Regulation for Patients With Respiratory Difficulty Using a Soft Bionic Robot
,”
IEEE Trans. Biomed. Eng.
,
71
(
10
), pp.
2923
2935
.
25.
Ratnovsky
,
A.
,
Elad
,
D.
, and
Halpern
,
P.
,
2008
, “
Mechanics of Respiratory Muscles
,”
Respir. Physiol. Neurobiol.
,
163
(
1-3
), pp.
82
89
.
26.
Yamada
,
M.
,
Shibuya
,
M.
,
Kanamaru
,
A.
,
Tanaka
,
K.
,
Suzuki
,
H.
,
Altose
,
M. D.
, and
Homma
,
I.
,
1996
, “
Benefits of Respiratory Muscle Stretch Gymnastics in Chronic Respiratory Disease
,”
Showa Univ. J. Med. Sci.
,
8
(
1
), pp.
63
71
.
27.
Leelarungrayub
,
D.
,
Pothongsunun
,
P.
,
Yankai
,
A.
, and
Pratanaphon
,
S.
,
2009
, “
Acute Clinical Benefits of Chest Wall-Stretching Exercise on Expired Tidal Volume, Dyspnea and Chest Expansion in a Patient With Chronic Obstructive Pulmonary Disease: A Single Case Study
,”
J. Bodyw. Mov. Ther.
,
13
(
4
), pp.
338
343
.
28.
Wang
,
J.
,
Wang
,
Y.
,
Fei
,
Y.
, and
Chen
,
W.
,
2022
, “
Pneumatic Bending Soft Actuator Coupling With Revolute Joint With Different Boundary Constraints
,”
IEEE/ASME Trans. Mechatron.
,
28
(
3
), pp.
1245
1255
.
29.
Wang
,
J.
,
Wang
,
Y.
,
Fei
,
Y.
, and
Chen
,
W.
,
2023
, “
Kinetostatic Analysis of Pneumatic Bending Soft Actuator Coupling With Revolute Joint
,”
ASME J. Mech. Rob.
,
15
(
6
), p.
061013
.
30.
Kim
,
B.
, and
Deshpande
,
A. D.
,
2017
, “
An Upper-Body Rehabilitation Exoskeleton Harmony With an Anatomical Shoulder Mechanism: Design, Modeling, Control, and Performance Evaluation
,”
Int. J. Robot. Res.
,
36
(
4
), pp.
414
435
.
31.
Yan
,
H.
,
Wang
,
H.
,
Chen
,
P.
,
Niu
,
J.
,
Ning
,
Y.
,
Li
,
S.
, and
Wang
,
X.
,
2021
, “
Configuration Design of an Upper Limb Rehabilitation Robot With a Generalized Shoulder Joint
,”
Appl. Sci.
,
11
(
5
), p.
2080
.
32.
Niyetkaliyev
,
A. S.
,
Hussain
,
S.
,
Ghayesh
,
M. H.
, and
Alici
,
G.
,
2017
, “
Review on Design and Control Aspects of Robotic Shoulder Rehabilitation Orthoses
,”
IEEE Trans. Human-Machine Syst.
,
47
(
6
), pp.
1134
1145
.
33.
Shan
,
G.
, and
Bohn
,
C.
,
2003
, “
Anthropometrical Data and Coefficients of Regression Related to Gender and Race
,”
Appl. Ergon.
,
34
(
4
), pp.
327
337
.
You do not currently have access to this content.