Graphical Abstract Figure

USMHEBot puncture experiment on different phantoms: (a) robot puncture on abdominal phantom

Graphical Abstract Figure

USMHEBot puncture experiment on different phantoms: (a) robot puncture on abdominal phantom

Close modal

Abstract

Ultrasound-guided percutaneous puncture technology has advantages such as intra-operative real-time imaging, noninvasive operation, high targeting accuracy, nonionizing radiation, and low cost. However, traditional percutaneous puncture surgery requires doctors to hold ultrasound probes or puncture needles, which causes complex operations. In this article, by integrating ultrasound and needle insertion mechanisms, an ultrasound-guided miniature puncture robot is proposed. This robot can work without an external navigation or industrial or cooperative manipulator after hand-eye calibration and acknowledge the coordinate relationship between the ultrasound image and the robot tip. A three degrees-of-freedom (DoFs) of in-plane mechanism using linear actuators is designed so that the puncture needle can always be scanned by ultrasound during the operation, ensuring real-time monitoring. The method of planning puncture path, modeling the robot kinematics, and ultrasound hand-eye calibration are proposed. To track a needle in an ultrasound image, the image recognition and filter algorithm for the needle tip are presented. The accuracy of the robot puncture operation is verified by point targeting and path tracking experiments in the water tank and phantom, and the puncture error of the robot is 1.5 ± 0.5 mm in the water tank, 1.98 mm in the abdominal phantom, and 1.41 mm in the breast phantom. Finally, the work of this article effectively improves the availability and effectiveness of the ultrasound-guided puncture robot.

References

1.
Porpiglia
,
F.
,
Checcucci
,
E.
,
Amparore
,
D.
,
Peretti
,
D.
,
Piramide
,
F.
,
De Cillis
,
S.
,
Piana
,
A.
, et al.,
2022
, “
Percutaneous Kidney Puncture With Three-Dimensional Mixed-Reality Hologram Guidance: From Preoperative Planning to Intraoperative Navigation
,”
Eur. Urol.
,
81
(
6
), pp.
588
597
.
2.
Mahmoud
,
M. Z.
,
Aslam
,
M.
,
Alsaadi
,
M.
,
Fagiri
,
M. A.
, and
Alonazi
,
B.
,
2018
, “
Evolution of Robot-Assisted Ultrasound-Guided Breast Biopsy Systems
,”
J. Radiat. Res. Appl. Sci.
,
11
(
1
), pp.
89
97
.
3.
Goldman
,
L. W.
,
2007
, “
Principles of CT and CT Technology
,”
J. Nucl. Med. Technol.
,
35
(
3
), pp.
115
128
.
4.
Kalender
,
W. A.
,
Buchenau
,
S.
,
Deak
,
P.
,
Kellermeier
,
M.
,
Langner
,
O.
,
Van Straten
,
M.
,
Vollmar
,
S.
, and
Wilharm
,
S.
,
2008
, “
Technical Approaches to the Optimisation of CT
,”
Phys. Medica
,
24
(
2
), pp.
71
79
.
5.
Rozylo-Kalinowska
,
I.
,
2022
, “Basics of Magnetic Resonance Imaging (MRI),”
Atlas of Dentomaxillofacial Anatomical Imaging
,
A.
Delantoni
and
K.
Orhan
, eds.,
Springer
,
Cham
, pp.
169
176
.
6.
Hore
,
P. J.
,
2015
,
Nuclear Magnetic Resonance
,
Oxford University Press
,
Oxford
.
7.
Octorina Dewi
,
D. E.
,
Supriyanto
,
E.
, and
Lai
,
K. W.
,
2015
, “Position Tracking Systems for Ultrasound Imaging: A Survey,”
Medical Imaging Technology:Reviews and Computational Applications
,
K.
Lai
and
D.
Octorina Dewi
, eds.,
Springer
,
Singapore
, pp.
57
89
.
8.
Von Haxthausen
,
F.
,
Böttger
,
S.
,
Wulff
,
D.
,
Hagenah
,
J.
,
García-Vázquez
,
V.
, and
Ipsen
,
S.
,
2021
, “
Medical Robotics for Ultrasound Imaging: Current Systems and Future Trends
,”
Curr. Rob. Rep.
,
2
, pp.
55
71
.
9.
Koskinopoulou
,
M.
,
Acemoglu
,
A.
,
Penza
,
V.
, and
Mattos
,
L. S.
,
2023
, “
Dual Robot Collaborative System for Autonomous Venous Access Based on Ultrasound and Bioimpedance Sensing Technology
,”
Proceedings of ICRA
,
London, UK
,
May 29–June 2
, IEEE, pp.
4648
4653
.
10.
Khan
,
A.
,
Meyers
,
J. E.
,
Siasios
,
I.
, and
Pollina
,
J.
,
2019
, “
Next-Generation Robotic Spine Surgery: First Report on Feasibility, Safety, and Learning Curve
,”
Oper. Neurosurg.
,
17
(
1
), pp.
61
69
.
11.
Levy
,
S.
,
Goldberg
,
S. N.
,
Roth
,
I.
,
Shochat
,
M.
,
Sosna
,
J.
,
Leichter
,
I.
, and
Flacke
,
S.
,
2021
, “
Clinical Evaluation of a Robotic System for Precise CT-Guided Percutaneous Procedures
,”
Abdominal Radiol.
,
46
(
10
), pp.
5007
5016
.
12.
Ben-David
,
E.
,
Shochat
,
M.
,
Roth
,
I.
,
Nissenbaum
,
I.
,
Sosna
,
J.
, and
Goldberg
,
S. N.
,
2018
, “
Evaluation of a CT-Guided Robotic System for Precise Percutaneous Needle Insertion
,”
J. Vasc. Intervent. Radiol.
,
29
(
10
), pp.
1440
1446
.
13.
Scharll
,
Y.
,
Radojicic
,
N.
,
Laimer
,
G.
,
Schullian
,
P.
, and
Bale
,
R.
,
2024
, “
Puncture Accuracy of Robot-Assisted CT-Based Punctures in Interventional Radiology: An Ex Vivo Study
,”
Diagnostics
,
14
(
13
), p.
1371
.
14.
Li
,
G.
,
Patel
,
N. A.
,
Sharma
,
K.
,
Monfaredi
,
R.
,
Dumoulin
,
C.
,
Fritz
,
J.
,
Iordachita
,
I.
, and
Cleary
,
K.
,
2020
, “
Body-Mounted Robotics for Interventional MRI Procedures
,”
IEEE Trans. Med. Rob. Bionics
,
2
(
4
), pp.
557
560
.
15.
Stoianovici
,
D.
,
Kim
,
C.
,
Petrisor
,
D.
,
Jun
,
C.
,
Lim
,
S.
,
Ball
,
M. W.
,
Ross
,
A.
,
Macura
,
K. J.
, and
Allaf
,
M. E.
,
2016
, “
MR Safe Robot, FDA Clearance, Safety and Feasibility of Prostate Biopsy Clinical Trial
,”
IEEE/ASME Trans. Mechatron.
,
22
(
1
), pp.
115
126
.
16.
Gandomi-Bernal
,
K.
,
2018
, “
Implementation of a Modular Software Architecture on a Real-Time Operating System for Generic Control over MRI Compatible Surgical Robots
,” Ph.D. dissertation, Worcester Polytechnic Institute, Worcester, MA.
17.
Cvetković
,
B.
,
Nešić
,
V.
,
Lazarević
,
M.
,
Mandić
,
P.
,
Marić
,
P.
, and
Dragović
,
M.
,
2018
, “
Advanced Hardware Control for Seven DoFs Robotic Arm-Neuro Arm
,”
Proceedings of the 10th International Symposium Machine and Industrial Design in Mechanical Engineering (KOD)
,
Novi Sad, Serbia
,
June 6–8
, Vol. 393, IOP Publishing, p.
012110
.
18.
Kojcev
,
R.
,
Fuerst
,
B.
,
Zettinig
,
O.
,
Fotouhi
,
J.
,
Lee
,
S. C.
,
Frisch
,
B.
,
Taylor
,
R.
,
Sinibaldi
,
E.
, and
Navab
,
N.
,
2016
, “
Dual-Robot Ultrasound-Guided Needle Placement: Closing the Planning-Imaging-Action Loop
,”
Int. J. Comput. Assist. Radiol. Surg.
,
11
, pp.
1173
1181
.
19.
Mazdarani
,
H.
,
Cotton
,
A.
, and
Rossa
,
C.
,
2023
, “
2d Ultrasound-Guided Visual Servoing for In-Plane Needle Tracking in Robot-Assisted Percutaneous Nephrolithotomy
,”
Proceedings of SMC
,
Honolulu, HI
,
Oct. 1–4
, IEEE, pp.
1786
1791
.
20.
Welleweerd
,
M. K.
,
Siepel
,
F. J.
,
Groenhuis
,
V.
,
Veltman
,
J.
, and
Stramigioli
,
S.
,
2020
, “
Design of an End-Effector for Robot-Assisted Ultrasound-Guided Breast Biopsies
,”
Int. J. Comput. Assist. Radiol. Surg.
,
15
, pp.
681
690
.
21.
Chen
,
S.
,
Wang
,
F.
,
Lin
,
Y.
,
Shi
,
Q.
, and
Wang
,
Y.
,
2021
, “
Ultrasound-Guided Needle Insertion Robotic System for Percutaneous Puncture
,”
Int. J. Comput. Assist. Radiol. Surg.
,
16
, pp.
475
484
.
22.
Balter
,
M. L.
,
Chen
,
A. I.
,
Maguire
,
T. J.
, and
Yarmush
,
M. L.
,
2015
, “
The System Design and Evaluation of a 7-DoF Image-Guided Venipuncture Robot
,”
IEEE Trans. Rob.
,
31
(
4
), pp.
1044
1053
.
23.
Hong
,
J.
,
Dohi
,
T.
,
Hashizume
,
M.
,
Konishi
,
K.
, and
Hata
,
N.
,
2004
, “
An Ultrasound-Driven Needle-Insertion Robot for Percutaneous Cholecystostomy
,”
Phys. Med. Biol.
,
49
(
3
), p.
441
.
24.
Loschak
,
P. M.
,
Degirmenci
,
A.
,
Tenzer
,
Y.
,
Tschabrunn
,
C. M.
,
Anter
,
E.
, and
Howe
,
R. D.
,
2016
, “
A Four Degree of Freedom Robot for Positioning Ultrasound Imaging Catheters
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051016
.
25.
Xiong
,
J.
,
Xu
,
C.
,
Ibrahim
,
K.
,
Deng
,
H.
, and
Xia
,
Z.
,
2021
, “
A Mechanism-Image Fusion Approach to Calibration of an Ultrasound-Guided Dual-Arm Robotic Brachytherapy System
,”
IEEE/ASME Trans. Mechatron.
,
26
(
6
), pp.
3211
3220
.
26.
Mischinger
,
J.
,
Kaufmann
,
S.
,
Russo
,
G. I.
,
Harland
,
N.
,
Rausch
,
S.
,
Amend
,
B.
,
Scharpf
,
M.
, et al.,
2018
, “
Targeted Vs Systematic Robot-Assisted Transperineal MRI-TRUS Fusion Prostate Biopsy
,”
BJU Int.
,
121
(
5
), pp.
791
798
.
27.
Natarajan
,
S.
,
Marks
,
L. S.
,
Margolis
,
D. J.
,
Huang
,
J.
,
Macairan
,
M. L.
,
Lieu
,
P.
, and
Fenster
,
A.
,
2011
, “
Clinical Application of a 3d Ultrasound-Guided Prostate Biopsy System
,”
Urol. Oncol.: Semin. Orig. Invest.
,
29
(
3
), pp.
334
342
.
28.
Lim
,
S.
,
Jun
,
C.
,
Chang
,
D.
,
Petrisor
,
D.
,
Han
,
M.
, and
Stoianovici
,
D.
,
2019
, “
Robotic Transrectal Ultrasound Guided Prostate Biopsy
,”
IEEE Trans. Biomed. Eng.
,
66
(
9
), pp.
2527
2537
.
29.
Jiang
,
W.
,
Wu
,
D.
,
Dong
,
W.
,
Ding
,
J.
,
Ye
,
Z.
,
Zeng
,
P.
, and
Gao
,
Y.
,
2023
, “
Design and Validation of a Nonparasitic 2R1T Parallel Hand-Held Prostate Biopsy Robot With Remote Center of Motion
,”
ASME J. Mech. Rob.
,
16
(
5
), p.
051009
.
30.
Li
,
L.
,
Wu
,
J.
,
Ding
,
H.
, and
Wang
,
G.
,
2019
, “
A ‘Eye-in-Body’ Integrated Surgery Robot System for Stereotactic Surgery
,”
Int. J. Comput. Assist. Radiol. Surg.
,
14
, pp.
2123
2135
.
31.
Kim
,
C.
,
Chang
,
D.
,
Petrisor
,
D.
,
Chirikjian
,
G.
,
Han
,
M.
, and
Stoianovici
,
D.
,
2013
, “
Ultrasound Probe and Needle-Guide Calibration for Robotic Ultrasound Scanning and Needle Targeting
,”
IEEE Trans. Biomed. Eng.
,
60
(
6
), pp.
1728
1734
.
You do not currently have access to this content.