Abstract

In this paper, a mobile robot with transformable wheel-legged mechanism is proposed to effectively cope with unstructured terrain in the work environment, especially steps. By using the combination of ratchet-crank-pilot bar mechanism and elastic element, the reliability of the deformation process of the robot wheel is ensured, the number of actuators required is reduced, and the efficiency of the drive system is improved. The kinematic analysis of deformation mechanism of the robot is carried out, and the mechanical study of its deformation process is carried out. Based on the kinematic model of the robot, the important factors affecting the robot's success in climbing over the step are analyzed, and a method is proposed to evaluate the step-climbing performance of the robot's transformable wheel-legged mechanism. The structural dimensions of the transformable wheel-legged mechanism were optimized by using the multi-objective artificial Hummingbird Algorithm (MOAHA) to provide a better step-climbing performance. In addition, the key factors affecting the robot's step climbing performance were verified by a virtual prototype, and a physical prototype was also designed and tested in real environments, and the results verified the good performance of this robot in terms of terrain adaptability.

References

1.
Chung
,
W.
, and
Iagnemma
,
K.
,
2016
, “Wheeled Robots,”
Springer Handbook of Robotics
,
B.
Siciliano
and
O.
Khatib
, eds.,
Springer International Publishing
,
Cham
, pp.
575
594
.
2.
Bellicoso
,
C. D.
,
Bjelonic
,
M.
,
Wellhausen
,
L.
,
Holtmann
,
K.
,
Günther
,
F.
,
Tranzatto
,
M.
,
Fankhauser
,
P.
, and
Hutter
,
M.
,
2018
, “
Advances in Real-World Applications for Legged Robots
,”
J. Field Rob.
,
35
(
8
), pp.
1311
1326
.
3.
Zhang
,
F.
,
Yu
,
Y.
,
Wang
,
Q.
,
Zeng
,
X.
, and
Niu
,
H.
,
2019
, “
A Terrain-Adaptive Robot Prototype Designed for Bumpy-Surface Exploration
,”
Mech. Mach. Theory
,
141
(
7
), pp.
213
225
.
4.
Chen
,
W.-H.
,
Lin
,
H.-S.
,
Lin
,
Y.-M.
, and
Lin
,
P.-C.
,
2017
, “
TurboQuad: A Novel Leg–Wheel Transformable Robot With Smooth and Fast Behavioral Transitions
,”
IEEE Trans. Rob.
,
33
(
5
)
,
pp.
1025
1040
.
5.
Xie
,
X.
,
Gao
,
F.
,
Huang
,
C.
, and
Zeng
,
W.
,
2017
, “
Design and Development of a New Transformable Wheel Used in Amphibious All-Terrain Vehicles (A-ATV)
,”
J. Terramech.
,
69
(
C
), pp.
45
61
.
6.
Li
,
J.
,
Liu
,
Y.
,
Yu
,
Z.
,
Guan
,
Y.
,
Zhao
,
Y.
,
Zhuang
,
Z.
, and
Sun
,
T.
,
2023
, “
Design, Analysis, and Experiment of a Wheel-Legged Mobile Robot
,”
Appl. Sci.
,
13
(
17
), p.
9936
.
7.
Zhou
,
X.
,
Alamdari
,
A.
, and
Krovi
,
V.
,
2013
, “Articulated Wheeled Vehicles: Back to the Future?,”
Mechanisms and Machine Science, Advances in Mechanisms, Robotics and Design Education and Research
,
V.
Kumar
,
J.
Schmiedeler
,
S. V.
Sreenivasan
, and
H. -J.
Su
, eds.,
Springer International Publishing
,
Heidelberg
, pp.
227
238
.
8.
Siegwart
,
R.
,
Lamon
,
P.
,
Estier
,
T.
,
Lauria
,
M.
, and
Piguet
,
R.
,
2002
, “
Innovative Design for Wheeled Locomotion in Rough Terrain
,”
Rob. Auton. Syst.
,
40
(
2–3
), pp.
151
162
.
9.
Sreenivasan
,
S. V.
, and
Waldron
,
K. J.
,
1996
, “
Displacement Analysis of an Actively Articulated Wheeled Vehicle Configuration With Extensions to Motion Planning on Uneven Terrain
,”
ASME J. Mech. Des.
,
118
(
2
), pp.
312
317
.
10.
Song
,
Z.
,
Luo
,
Z.
,
Wei
,
G.
, and
Shang
,
J.
,
2024
, “
Self-Adaptive Obstacle Crossing of an AntiBot From Reconfiguration Control and Mechanical Adaptation
,”
ASME J. Mech. Rob.
,
16
(
2
), p.
021002
.
11.
Ni
,
L.
,
Ma
,
F.
,
Ge
,
L.
, and
Wu
,
L.
,
2021
, “
Design and Posture Control of a Wheel-Legged Robot With Actively Passively Transformable Suspension System
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011014
.
12.
Alamdari
,
A.
, and
Krovi
,
V.
,
2014
, “
Active Reconfiguration for Performance Enhancement in Articulated Wheeled Vehicles
,”
Proceedings of the ASME 2014 Dynamic Systems and Control Conference. Volume 2: Ground and Space Vehicle Dynamics
,
San Antonio, TX
,
Oct. 22–24
,
p. V002T27A004
.
13.
Alamdari
,
A.
,
Zhou
,
X.
, and
Krovi
,
V. N.
,
2013
, “
Kinematic Modeling, Analysis and Control of Highly Reconfigurable Articulated Wheeled Vehicles
,”
Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 6A: 37th Mechanisms and Robotics Conference
,
Portland, OR
,
Aug. 4–7
,
p. V06AT07A070
.
14.
Alamdari
,
A.
, and
Krovi
,
V. N.
,
2016
, “
Static Balancing of Highly Reconfigurable Articulated Wheeled Vehicles for Power Consumption Reduction of Actuators
,”
Int. J. Mech. Rob. Syst.
,
3
(
1
), p.
15
.
15.
Alamdari
,
A.
, and
Krovi
,
V. N.
,
2016
, “
Design of Articulated Leg–Wheel Subsystem by Kinetostatic Optimization
,”
Mech. Mach. Theory
,
100
(
4
), pp.
222
234
.
16.
Sun
,
Z.
,
Zhang
,
D.
,
Li
,
Z.
,
Shi
,
Y.
, and
Wang
,
N.
,
2022
, “
Optimum Design and Trafficability Analysis for an Articulated Wheel-Legged Forestry Chassis
,”
ASME J. Mech. Des.
,
144
(
1
), p.
013301
.
17.
Zhao
,
J.
,
Han
,
T.
,
Wang
,
S.
,
Liu
,
C.
,
Fang
,
J.
, and
Liu
,
S.
,
2021
, “
Design and Research of All-Terrain Wheel-Legged Robot
,”
Sensors
,
21
(
16
), p.
5367
.
18.
Dharmawan
,
A. G.
,
Xavier
,
P.
,
Hariri
,
H. H.
,
Soh
,
G. S.
,
Baji
,
A.
,
Bouffanais
,
R.
,
Foong
,
S.
,
Low
,
H. Y.
, and
Wood
,
K. L.
,
2019
, “
Design, Modeling, and Experimentation of a Bio-Inspired Miniature Climbing Robot With Bilayer Dry Adhesives
,”
ASME J. Mech. Rob.
,
11
(
2
), p.
020902
.
19.
Koh
,
D. C. Y.
,
Dharmawan
,
A. G.
,
Hariri
,
H. H.
,
Soh
,
G. S.
,
Foong
,
S.
,
Bouffanais
,
R.
,
Low
,
H. Y.
, and
Wood
,
K. L.
,
2019
, “
Design and Analysis of A Miniature Two-Wheg Climbing Robot With Robust Internal and External Transitioning Capabilities
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
,
May 20–24
, pp.
9740
9746
.
20.
Wang
,
Y.
, and
Hong
,
D.
,
2010
, “
Finding the Shortest Path for a Mobile Robot With Two Actuated Spoke Wheels Based on Variable Kinematic Configurations
,”
Proceedings of the ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 2: 34th Annual Mechanisms and Robotics Conference, Parts A and B
,
Montreal, Quebec, Canada
,
Aug. 15–18
, pp.
1417
1426
.
21.
Mertyüz
,
İ
,
Tanyıldızı
,
A. K.
,
Taşar
,
B.
,
Tatar
,
A. B.
, and
Yakut
,
O.
,
2020
, “
FUHAR: A Transformable Wheel-Legged Hybrid Mobile Robot
,”
Rob. Auton. Syst.
,
133
(
2
), p.
103627
.
22.
Kim
,
Y.
,
Lee
,
Y.
,
Lee
,
S.
,
Kim
,
J.
,
Kim
,
H. S.
, and
Seo
,
T.
,
2020
, “
STEP: A New Mobile Platform With 2-DOF Transformable Wheels for Service Robots
,”
IEEE/ASME Trans. Mechatron.
,
25
(
4
), pp.
1859
1868
.
23.
Kim
,
K.
,
Kim
,
Y.
,
Kim
,
J.
,
Kim
,
H. S.
, and
Seo
,
T.
,
2020
, “
Optimal Trajectory Planning for 2-DOF Adaptive Transformable Wheel
,”
IEEE Access
,
8
(
1
), pp.
14452
14459
.
24.
Wei
,
Z.
,
Ping
,
P.
,
Luo
,
Y.
,
Liu
,
J.
,
Chen
,
D.
,
Wang
,
W.
,
Sun
,
H.
,
Song
,
A.
, and
Song
,
G.
,
2023
, “
A Novel Transformable Leg-Wheel Mechanism
,”
ASME J. Mech. Rob.
,
16
(
3
), p.
031008
.
25.
Chou
,
J.-J.
, and
Yang
,
L.-S.
,
2013
, “
Innovative Design of a Claw-Wheel Transformable Robot
,”
2013 IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, pp.
1337
1342
.
26.
Shi
,
Y.
,
Zhang
,
M.
,
Li
,
M.
, and
Zhang
,
X.
,
2023
, “
Design and Analysis of a Wheel−Leg Hybrid Robot With Passive Transformable Wheels
,”
Symmetry
,
15
(
4
), p.
800
.
27.
Zhang
,
S.
,
Yao
,
J.
,
Wang
,
Y.
,
Liu
,
Z.
,
Xu
,
Y.
, and
Zhao
,
Y.
,
2022
, “
Design and Motion Analysis of Reconfigurable Wheel-Legged Mobile Robot
,”
Def. Technol.
,
18
(
6
), pp.
1023
1040
.
28.
Bai
,
L.
,
Guan
,
J.
,
Chen
,
X.
,
Hou
,
J.
, and
Duan
,
W.
,
2018
, “
An Optional Passive/Active Transformable Wheel-Legged Mobility Concept for Search and Rescue Robots
,”
Rob. Auton. Syst.
,
107
(
C
), pp.
145
155
.
29.
Kim
,
Y.-S.
,
Jung
,
G.-P.
,
Kim
,
H.
,
Cho
,
K.-J.
, and
Chu
,
C.-N.
,
2013
, “
Wheel Transformer: A Miniaturized Terrain Adaptive Robot With Passively Transformed Wheels
,”
2013 IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, pp.
5625
5630
.
30.
Sun
,
T.
,
Xiang
,
X.
,
Su
,
W.
,
Wu
,
H.
, and
Song
,
Y.
,
2017
, “
A Transformable Wheel-Legged Mobile Robot: Design, Analysis and Experiment
,”
Rob. Auton. Syst.
,
98
(
C
), pp.
30
41
.
31.
Zhao
,
W.
,
Zhang
,
Z.
,
Mirjalili
,
S.
,
Wang
,
L.
,
Khodadadi
,
N.
, and
Mirjalili
,
S. M.
,
2022
, “
An Effective Multi-objective Artificial Hummingbird Algorithm With Dynamic Elimination-Based Crowding Distance for Solving Engineering Design Problems
,”
Comput. Methods Appl. Mech. Eng.
,
398
(
1
), p.
115223
.
32.
Luo
,
Z.
,
Shang
,
J.
,
Wei
,
G.
, and
Ren
,
L.
,
2018
, “
A Reconfigurable Hybrid Wheel-Track Mobile Robot Based on Watt II Six-Bar Linkage
,”
Mech. Mach. Theory
,
128
(
10
), pp.
16
32
.
33.
Park
,
J.
,
Kim
,
J.-C.
,
Nguyen
,
C. D. T.
,
Kim
,
K.-S.
, and
Kim
,
S.
,
2018
, “
A Passively Adaptive Variable-Radius Pulley for a Tendon-Driven Robotic Joint
,”
Mech. Mach. Theory
,
128
(
7
), pp.
110
124
.
You do not currently have access to this content.