Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This paper deals with the hitherto unexplored problem of determining the T1-positions of the first-kind of the coupler link for all types of 4R four-bar linkages. Geometrical proofs for the existence and number of T1-positions are given based on geometrical inequalities. The number of T1-positions are enumerated for each circuit and branch of all types of linkages. Analytical as well as geometric methods for the determination of the configuration of the linkage at an asymptotic configuration are also presented. T1-positions of a 3R1P four-bar linkage are also discussed.

References

1.
Bottema
,
O.
, and
Roth
,
B.
,
1979
,
Theoretical Kinematics
,
North-Holland Publishing Company
,
Amsterdam
.
2.
Veldkamp
,
G. R.
,
1963
,
Curvature Theory in Plane Kinematics
,
J.B. Wolters
,
Groningen
.
3.
Chan
,
C. L.
, and
Ting
,
K.-L.
,
2019
, “
Extended Camus Theory and Higher Order Conjugated Curves
,”
ASME J. Mech. Rob.
,
11
(
5
), p.
051009
.
4.
Chan
,
C. L.
, and
Ting
,
K.-L.
,
2019
, “
Curvature Theory on Contact and Transfer Characteristics of Enveloping Curves
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011018
.
5.
Shiwalkar
,
P. B.
,
Moghe
,
S. D.
, and
Modak
,
J. P.
,
2022
, “
Novel Methodology for Inflection Circle-Based Synthesis of Straight Line Crank Rocker Mechanism
,”
ASME J. Mech. Rob.
,
14
(
5
), p.
055001
.
6.
Veldkamp
,
G. R.
,
1983
, “
The Instantaneous Motion of a Line in a T-Position
,”
Mech. Mach. Theory
,
18
(
6
), pp.
439
444
.
7.
Goehler
,
C. M.
,
Stanišić
,
M. M.
, and
Perez
,
V. M.
,
2004
, “
A Generalized Parameterization of T1 Motion and Its Application to the Synthesis of Planar Mechanisms
,”
Mech. Mach. Theory
,
39
(
11
), pp.
1223
1244
.
8.
Kimbrell
,
J. E.
, and
Hunt
,
K. H.
,
1981
, “
Coupler Point-Paths and Line-Envelopes of 4-Bar Linkages in Asymptotic Configurations
,”
Mech. Mach. Theory
,
30
(
6
), pp.
897
912
.
9.
Dan
,
A.
,
Krishna
,
K. R.
, and
Saha
,
S. K.
,
2023
, “
Static Stability of Planar Contacting Systems: Analytical Treatment in Euclidean Space
,”
ASME J. Mech. Rob.
,
16
(
8
), p.
081009
.
10.
Krishnamurty
,
S.
, and
Turcic
,
D. A.
,
1988
, “
A General Method of Determining and Eliminating Branching in Planar Multiloop Mechanisms
,”
ASME J. Mech. Trans. Autom. Des.
,
110
(
4
), pp.
414
422
.
11.
Chase
,
T. R.
, and
Mirth
,
J. A.
,
1990
, “
Circuits and Branches of Single-Degree-of-Freedom Planar Linkages
,”
ASME J. Mech. Des.
,
115
(
2
), pp.
223
230
.
12.
Barker
,
C. R.
, and
Jeng
,
Y.-R.
,
1985
, “
Range of the Six Fundamental Position Angles of a Planar Four-Bar Mechanism
,”
Mech. Mach. Theory
,
20
(
4
), pp.
329
344
.
13.
Mallik
,
A. K.
,
Ghosh
,
A.
, and
Dittrich
,
G.
,
1994
,
Kinematic Analysis and Synthesis of Mechanisms
,
CRC Press
,
Boca Raton, FL
.
14.
Williams
,
R. L.
, and
Reinholtz
,
C. F.
,
1986
, “
Proof of Grashof’s Law Using Polynomial Discriminants
,”
ASME J. Mech. Trans. Autom. Des.
,
108
(
4
), pp.
562
564
.
15.
Hall
,
H. S.
, and
Stevens
,
F. H.
,
1921
,
A School Geometry
, 2nd ed.,
Macmillan and Company, Limited
,
London
.
16.
Barker
,
C. R.
,
1985
, “
A Complete Classification of Planar Four-Bar Linkages
,”
Mech. Mach. Theory
,
20
(
6
), pp.
535
554
.
You do not currently have access to this content.