Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This study has developed a bio-syncretic parallel hip exoskeleton (BsPH-Exo) to address the misalignment between the rotational center of the hip joint and that of the mechanical joint. BsPH-Exo uses the hip joint as its sole motion constraint to ensure precise alignment with the hip joint center (HJC). To tackle the high costs and technical limitations of traditional methods for measuring HJC coordinates, we propose a new solution: using sensors embedded in BsPH-Exo to gather motion data from both the motors and the human leg, then processing this data through a formula to calculate the exact HJC coordinates. This approach not only simplifies the measurement process but also significantly reduces costs. Through analysis of the workspace, singularity, and maximum torque index, it was found that BsPH-Exo provides a wide range of leg motion while avoiding singularities within the rehabilitation scope. Additionally, the torque law from BsPH-Exo aligns with the torque requirements for human leg movement. In a series of wearable experiments, BsPH-Exo demonstrated its ability to meet rehabilitation training needs and showed excellent controllability in flexion/extension and adduction/abduction directions.

References

1.
Chen
,
B.
,
Zi
,
B.
,
Qin
,
L.
, and
Pan
,
Q.
,
2020
, “
State-of-the-Art Research in Robotic Hip Exoskeletons: A General Review
,”
J. Orthop. Transl.
,
20
, pp.
4
13
. org/10.1016/j.jot.2019.09.006
2.
Shi
,
D.
,
Zhang
,
W.
,
Zhang
,
W.
, and
Ding
,
X.
,
2019
, “
A Review on Lower Limb Rehabilitation Exoskeleton Robots
,”
Chin. J. Mech. Eng.
,
32
(
1
), pp.
1
11
. org/10.1186/s10033-019-0389-8
3.
Shafer
,
B. A.
,
Powell
,
J. C.
,
Young
,
A. J.
, and
Sawicki
,
G. S.
,
2022
, “
Emulator-Based Optimization of a Semi-Active Hip Exoskeleton Concept: Sweeping Impedance Across Walking Speeds
,”
IEEE Trans. Biomed. Eng.
,
70
(
1
), pp.
271
282
.
4.
Lim
,
B.
,
Hwang
,
S. H.
,
Hyung
,
S.
,
Lee
,
J.
,
Shim
,
Y.
, and
Choi
,
B.-o.
,
2018
, “
Ankle Pathologic Gait Assistance of a Hip Exoskeleton: Simulation and Experiment
,”
IEEE Rob. Autom. Lett.
,
3
(
3
), pp.
2190
2197
.
5.
Xue
,
T.
,
Wang
,
Z.
,
Zhang
,
T.
, and
Zhang
,
M.
,
2019
, “
Adaptive Oscillator-Based Robust Control for Flexible Hip Assistive Exoskeleton
,”
IEEE Rob. Autom. Lett.
,
4
(
4
), pp.
3318
3323
.
6.
Poliero
,
T.
,
Fanti
,
V.
,
Sposito
,
M.
,
Caldwell
,
D. G.
, and
Di Natali
,
C.
,
2022
, “
Active and Passive Back-Support Exoskeletons: A Comparison in Static and Dynamic Tasks
,”
IEEE Rob. Autom. Lett.
,
7
(
3
), pp.
8463
8470
.
7.
Jayaraman
,
C.
,
Embry
,
K. R.
,
Mummidisetty
,
C. K.
,
Moon
,
Y.
,
Giffhorn
,
M.
,
Prokup
,
S.
,
Lim
,
B.
, et al.,
2022
, “
Modular Hip Exoskeleton Improves Walking Function and Reduces Sedentary Time in Community-Dwelling Older Adults
,”
J. NeuroEng. Rehabil.
,
19
(
1
), pp.
1
12
.
8.
Shi
,
D.
,
Zhang
,
W.
,
Zhang
,
W.
, and
Ding
,
X.
,
2020
, “
Assist-As-Needed Attitude Control in Three-Dimensional Space for Robotic Rehabilitation
,”
Mech. Mach. Theory
,
154
, p.
104044
.
9.
Nf
,
M. B.
,
Junius
,
K.
,
Rossini
,
M.
,
Rodriguez-Guerrero
,
C.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2018
, “
Misalignment Compensation for Full Human-Exoskeleton Kinematic Compatibility: State of the Art and Evaluation
,”
ASME Appl. Mech. Rev.
,
70
(
5
), p.
050802
.
10.
Wang
,
X.
,
Guo
,
S.
, and
Bai
,
S.
,
2023
, “
A Cable-Driven Parallel Hip Exoskeleton for High-Performance Walking Assistance
,”
IEEE Trans. Ind. Electron.
,
71
(
3
), pp.
2705
2715
.
11.
Jarrassé
,
N.
, and
Morel
,
G.
,
2011
, “
Connecting a Human Limb to an Exoskeleton
,”
IEEE Trans. Rob.
,
28
(
3
), pp.
697
709
.
12.
Kang
,
I.
,
Hsu
,
H.
, and
Young
,
A.
,
2019
, “
The Effect of Hip Assistance Levels on Human Energetic Cost Using Robotic Hip Exoskeletons
,”
IEEE Rob. Autom. Lett.
,
4
(
2
), pp.
430
437
.
13.
Zhou
,
N.
,
Liu
,
Y.
,
Song
,
Q.
, and
Wu
,
D.
,
2022
, “
A Compatible Design of a Passive Exoskeleton to Reduce the Body-Exoskeleton Interaction Force
,”
Machines
,
10
(
5
), p.
371
.
14.
Chiu
,
V. L.
,
Raitor
,
M.
, and
Collins
,
S. H.
,
2021
, “
Design of a Hip Exoskeleton With Actuation in Frontal and Sagittal Planes
,”
IEEE Trans. Med. Rob. Bionics
,
3
(
3
), pp.
773
782
.
15.
Cao
,
W.
,
Shang
,
D.
,
Yin
,
M.
,
Li
,
X.
,
Xu
,
T.
,
Zhang
,
L.
, and
Wu
,
X.
,
2023
, “
Development and Evaluation of a Hip Exoskeleton for Lateral Resistance Walk Exercise
,”
IEEE/ASME Trans. Mechatron.
,
28
(
4
), pp.
1966
1974
.
16.
Ishmael
,
M. K.
,
Archangeli
,
D.
, and
Lenzi
,
T.
,
2022
, “
A Powered Hip Exoskeleton With High Torque Density for Walking, Running, and Stair Ascent
,”
IEEE/ASME Trans. Mechatron.
,
27
(
6
), pp.
4561
4572
.
17.
Koopman
,
A. S.
,
Näf
,
M.
,
Baltrusch
,
S. J.
,
Kingma
,
I.
,
Rodriguez-Guerrero
,
C.
,
Babič
,
J.
,
de Looze
,
M. P.
, and
van Dieën
,
J. H.
,
2020
, “
Biomechanical Evaluation of a New Passive Back Support Exoskeleton
,”
J. Biomech.
,
105
, p.
109795
.
18.
Liu
,
J.
,
He
,
Y.
,
Yang
,
J.
,
Cao
,
W.
, and
Wu
,
X.
,
2022
, “
Design and Analysis of a Novel 12-DOF Self-Balancing Lower Extremity Exoskeleton for Walking Assistance
,”
Mech. Mach. Theory
,
167
, p.
104519
.
19.
Li
,
J.
,
Li
,
S.
,
Zhang
,
L.
,
Tao
,
C.
, and
Ji
,
R.
,
2018
, “
Position Solution and Kinematic Interference Analysis of a Novel Parallel Hip-Assistive Mechanism
,”
Mech. Mach. Theory
,
120
, pp.
265
287
.
20.
Wang
,
X.
,
Guo
,
S.
,
Qu
,
B.
,
Song
,
M.
,
Wang
,
P.
, and
Liu
,
D.-X.
,
2022
, “
Design and Experimental Verification of a Parallel Hip Exoskeleton System for Full-Gait-Cycle Rehabilitation
,”
ASME J. Mech. Rob.
,
14
(
5
), p.
054504
.
21.
Wang
,
X.
,
Guo
,
S.
,
Qu
,
B.
, and
Bai
,
S.
,
2022
, “
Design and Experimental Verification of a Hip Exoskeleton Based on Human-Machine Dynamics for Walking Assistance
,”
IEEE Trans. Hum.-Mach. Syst.
,
53
(
1
), pp.
85
97
.
22.
Yu
,
Y.
, and
Liang
,
W.
,
2014
, “
Manipulability Inclusive Principle for Hip Joint Assistive Mechanism Design Optimization
,”
Int. J. Adv. Manuf. Technol.
,
70
, pp.
929
945
.
23.
Zhang
,
W.
,
Zhang
,
S.
,
Ceccarelli
,
M.
, and
Shi
,
D.
,
2016
, “Design and Kinematic Analysis of a Novel Metamorphic Mechanism for Lower Limb Rehabilitation,”
Advances in Reconfigurable Mechanisms and Robots II
,
X.
Ding
,
X.
Kong
, and
J. S.
Dai
, eds.,
Springer
,
Cham
, pp.
545
558
.
24.
Tian
,
C.
,
Fang
,
Y.
, and
Ge
,
Q.
,
2019
, “
Design and Analysis of a Partially Decoupled Generalized Parallel Mechanism for 3TLR Motion
,”
Mech. Mach. Theory
,
140
, pp.
211
232
.
25.
Zhao
,
Y.
,
2013
, “
Dynamic Optimum Design of a Three Translational Degrees of Freedom Parallel Robot While Considering Anisotropic Property
,”
Rob. Comput. Integr. Manuf.
,
29
(
4
), pp.
100
112
.
26.
Joshi
,
S. A.
, and
Tsai
,
L. -W.
,
2002
, “
Jacobian Analysis of Limited-DOF Parallel Manipulators
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
254
258
.
27.
Zuo
,
S.
,
Li
,
J.
,
Dong
,
M.
,
Zhou
,
X.
,
Fan
,
W.
, and
Kong
,
Y.
,
2020
, “
Design and Performance Evaluation of a Novel Wearable Parallel Mechanism for Ankle Rehabilitation
,”
Front. Neurorob.
,
14
, p.
9
.
28.
Xu
,
J.
,
Niu
,
Y.
, and
Liu
,
F.
,
2024
, “
Design and Verification of Parallel Hip Exoskeleton Considering Output Torque Anisotropy
,”
J. Bionic Eng.
,
21
(
3
), pp.
1
16
. org/10.1007/s42235-024-00500-y
You do not currently have access to this content.