Abstract

This article presents a hybrid robot for machining the inner cavity of large-scale workpiece, and it is composed of three parts: a mobile device with 1T degree-of-freedom (DoF), a serial module with 1R1T DoFs, and a 2RRU-RRS parallel kinematic mechanism (PKM) with 2R1T DoFs. The 2RRU-RRS PKM has some advantages with a folding structure, only one S joint, two certain rotational axes, and all the fixed actuators. In this article, the conceptual design, theoretical kinematic and dynamic modeling, performance evaluation, and optimization of the parallel system are investigated. A 3D printing model is built to demonstrate the application potential. This article plays an exemplary role in the design of inner-cavity machining hybrid robots.

References

1.
Zhu
,
D. H.
,
Feng
,
X. Z.
,
Xu
,
X. H.
,
Yang
,
Z. Y.
,
Li
,
W. L.
,
Yan
,
S. J.
, and
Ding
,
H.
,
2020
, “
Robotic Grinding of Complex Components: A Step Towards Efficient and Intelligent Machining—Challenges, Solutions, and Applications
,”
Rob. Comput. Integr. Manuf.
,
65
, p.
101908
.
2.
Leali
,
F.
,
Vergnano
,
A.
,
Pini
,
F.
,
Pellicciari
,
M.
, and
Berselli
,
G.
,
2016
, “
A Workcell Calibration Method for Enhancing Accuracy in Robot Machining of Aerospace Parts
,”
Int. J. Adv. Manuf. Technol.
,
85
(
1–4
), pp.
47
55
.
3.
Chong
,
Z. H.
,
Xie
,
F. G.
,
Liu
,
X. J.
,
Wang
,
J. S.
, and
Niu
,
H. F.
,
2020
, “
Design of the Parallel Mechanism for a Hybrid Mobile Robot in Wind Turbine Blades Polishing
,”
Rob. Comput.-Integr. Manuf.
,
61
, p.
101857
.
4.
Zhao
,
H.
,
Yu
,
X.
,
Li
,
X. F.
, and
Ding
,
H.
,
2019
, “
Weighted Sum of Vector Norms Based Contouring Control Method for Five-Axis CNC Machine Tools
,”
Precis. Eng.
,
60
, pp.
93
103
.
5.
Tao
,
B.
,
Zhao
,
X. W.
,
Yan
,
S. J.
, and
Ding
,
H.
,
2022
, “
Kinematic Modeling and Control of Mobile Robot for Large-Scale Workpiece Machining
,”
Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf.
,
236
(
1–2
), pp.
29
38
.
6.
Li
,
Q. C.
,
Wu
,
W. F.
,
Xiang
,
J. N.
,
Li
,
H. J.
, and
Wu
,
C. Y.
,
2015
, “
A Hybrid Robot for Friction Stir Welding
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
229
(
14
), pp.
2639
2650
.
7.
Starrag
,
2022
, “Ecospeed,” http://www.starrag.com/zh-cn/series/ecospeed-ecoliner-xi-lie/27/product-range/11, Accessed May 21, 2023.
8.
Siciliano
,
B.
,
1999
, “
The Tricept Robot: Inverse Kinematics, Manipulability Analysis and Closed-Loop Direct Kinematics Algorithm
,”
Robotica
,
17
(
4
), pp.
437
445
.
9.
Xu
,
L. M.
,
Li
,
Q. C.
,
Tong
,
J. H.
, and
Chen
,
Q. H.
,
2018
, “
Tex3: An 2R1T Parallel Manipulator With Minimum DOF of Joints and Fixed Linear Actuators
,”
Int. J. Precis. Eng. Manuf.
,
19
(
2
), pp.
227
238
.
10.
Wang
,
L. P.
,
Xu
,
H. Y.
, and
Guan
,
L. W.
,
2017
, “
Optimal Design of a 3-PUU Parallel Mechanism With 2R1T DOFs
,”
Mech. Mach. Theory
,
114
, pp.
190
203
.
11.
Xu
,
L. M.
,
Ye
,
W.
, and
Li
,
Q. C.
,
2022
, “
Design, Analysis, and Experiment of a New Parallel Manipulator With Two Rotational and One Translational Motion
,”
Mech. Mach. Theory
,
177
, p.
105064
.
12.
Yoshikawa
,
T.
,
1985
, “
Manipulability of Robotic Mechanisms
,”
Int. J. Rob. Res.
,
4
(
2
), pp.
3
9
.
13.
Angeles
,
J.
, and
López-Cajún
,
C. S.
,
1992
, “
Kinematic Isotropy and the Conditioning Index of Serial Robotic Manipulators
,”
Int. J. Rob. Res.
,
11
(
6
), pp.
560
571
.
14.
Wang
,
J. S.
,
Wu
,
C.
, and
Liu
,
X. J.
,
2010
, “
Performance Evaluation of Parallel Manipulators: Motion/Force Transmissibility and Its Index
,”
Mech. Mach. Theory
,
45
(
10
), pp.
1462
1476
.
15.
Li
,
Q. C.
,
Zhang
,
N. B.
, and
Wang
,
F. B.
,
2017
, “
New Indices for Optimal Design of Redundantly Actuated Parallel Manipulators
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
011007
.
16.
Merlet
,
J. P.
,
2006
, “
Jacobian, Manipulability, Condition Number and Accuracy of Parallel Robots
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
199
206
.
17.
Yoshikawa
,
T.
,
1985
, “
Dynamic Manipulability of Robot Manipulators
,”
Proceedings of the 1985 IEEE International Conference on Robotics and Automation
,
St. Louis, MO
,
Mar. 25–28
, pp.
1033
1038
.
18.
Yoshikawa
,
T.
,
1990
, “
Translational and Rotational Manipulability of Robotic Manipulators
,”
Proceedings of the 1991 International Conference on Industrial Electronics, Control and Instrumentation
,
Kobe, Japan
,
Oct. 28–Nov. 1
, pp.
228
233
.
19.
Chen
,
G. L.
,
Yu
,
W. D.
,
Li
,
Q. C.
, and
Wang
,
H.
,
2017
, “
Dynamic Modeling and Performance Analysis of the 3-PRRU 1T2R Parallel Manipulator Without Parasitic Motion
,”
Nonlinear Dyn.
,
90
(
1
), pp.
339
353
.
20.
Huang
,
Z.
, and
Li
,
Q. C.
,
2003
, “
Type Synthesis of Symmetrical Lower-Mobility Parallel Mechanisms Using the Constraint-Synthesis Method
,”
Int. J. Rob. Res.
,
22
(
1
), pp.
59
79
.
21.
Exechon World
,
2023
, “Structure Concept of Exechon PKM,” http://www.exechonworld.com/document/200804/article34.htm, Accessed May 21, 2023.
22.
Merlet
,
J. P.
,
1993
, “
Direct Kinematics of Parallel Manipulators
,”
IEEE Trans. Rob. Autom.
,
9
(
6
), pp.
842
846
.
23.
Gosselin
,
C. M.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.
24.
Zlatanov
,
D.
,
Bonev
,
I. A.
, and
Gosselin
,
C. M.
,
2002
, “
Constraint Singularities of Parallel Mechanisms
,”
Proceedings of the 2002 IEEE International Conference on Robotics and Automation
,
Washington, DC
,
May 11–15
, pp.
496
502
.
25.
Liu
,
X. J.
, and
Wang
,
J. S.
,
2007
, “
A New Methodology for Optimal Kinematic Design of Parallel Mechanisms
,”
Mech. Mach. Theory
,
42
(
9
), pp.
1210
1224
.
You do not currently have access to this content.