Abstract
This article presents a hybrid robot for machining the inner cavity of large-scale workpiece, and it is composed of three parts: a mobile device with 1T degree-of-freedom (DoF), a serial module with 1R1T DoFs, and a 2RRU-RRS parallel kinematic mechanism (PKM) with 2R1T DoFs. The 2RRU-RRS PKM has some advantages with a folding structure, only one S joint, two certain rotational axes, and all the fixed actuators. In this article, the conceptual design, theoretical kinematic and dynamic modeling, performance evaluation, and optimization of the parallel system are investigated. A 3D printing model is built to demonstrate the application potential. This article plays an exemplary role in the design of inner-cavity machining hybrid robots.
Issue Section:
Technical Brief
References
1.
Zhu
, D. H.
, Feng
, X. Z.
, Xu
, X. H.
, Yang
, Z. Y.
, Li
, W. L.
, Yan
, S. J.
, and Ding
, H.
, 2020
, “Robotic Grinding of Complex Components: A Step Towards Efficient and Intelligent Machining—Challenges, Solutions, and Applications
,” Rob. Comput. Integr. Manuf.
, 65
, p. 101908
. 2.
Leali
, F.
, Vergnano
, A.
, Pini
, F.
, Pellicciari
, M.
, and Berselli
, G.
, 2016
, “A Workcell Calibration Method for Enhancing Accuracy in Robot Machining of Aerospace Parts
,” Int. J. Adv. Manuf. Technol.
, 85
(1–4
), pp. 47
–55
. 3.
Chong
, Z. H.
, Xie
, F. G.
, Liu
, X. J.
, Wang
, J. S.
, and Niu
, H. F.
, 2020
, “Design of the Parallel Mechanism for a Hybrid Mobile Robot in Wind Turbine Blades Polishing
,” Rob. Comput.-Integr. Manuf.
, 61
, p. 101857
. 4.
Zhao
, H.
, Yu
, X.
, Li
, X. F.
, and Ding
, H.
, 2019
, “Weighted Sum of Vector Norms Based Contouring Control Method for Five-Axis CNC Machine Tools
,” Precis. Eng.
, 60
, pp. 93
–103
. 5.
Tao
, B.
, Zhao
, X. W.
, Yan
, S. J.
, and Ding
, H.
, 2022
, “Kinematic Modeling and Control of Mobile Robot for Large-Scale Workpiece Machining
,” Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf.
, 236
(1–2
), pp. 29
–38
. 6.
Li
, Q. C.
, Wu
, W. F.
, Xiang
, J. N.
, Li
, H. J.
, and Wu
, C. Y.
, 2015
, “A Hybrid Robot for Friction Stir Welding
,” Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
, 229
(14
), pp. 2639
–2650
. 7.
Starrag
, 2022
, “Ecospeed,” http://www.starrag.com/zh-cn/series/ecospeed-ecoliner-xi-lie/27/product-range/11, Accessed May 21, 2023.8.
Siciliano
, B.
, 1999
, “The Tricept Robot: Inverse Kinematics, Manipulability Analysis and Closed-Loop Direct Kinematics Algorithm
,” Robotica
, 17
(4
), pp. 437
–445
. 9.
Xu
, L. M.
, Li
, Q. C.
, Tong
, J. H.
, and Chen
, Q. H.
, 2018
, “Tex3: An 2R1T Parallel Manipulator With Minimum DOF of Joints and Fixed Linear Actuators
,” Int. J. Precis. Eng. Manuf.
, 19
(2
), pp. 227
–238
. 10.
Wang
, L. P.
, Xu
, H. Y.
, and Guan
, L. W.
, 2017
, “Optimal Design of a 3-PUU Parallel Mechanism With 2R1T DOFs
,” Mech. Mach. Theory
, 114
, pp. 190
–203
. 11.
Xu
, L. M.
, Ye
, W.
, and Li
, Q. C.
, 2022
, “Design, Analysis, and Experiment of a New Parallel Manipulator With Two Rotational and One Translational Motion
,” Mech. Mach. Theory
, 177
, p. 105064
. 12.
Yoshikawa
, T.
, 1985
, “Manipulability of Robotic Mechanisms
,” Int. J. Rob. Res.
, 4
(2
), pp. 3
–9
. 13.
Angeles
, J.
, and López-Cajún
, C. S.
, 1992
, “Kinematic Isotropy and the Conditioning Index of Serial Robotic Manipulators
,” Int. J. Rob. Res.
, 11
(6
), pp. 560
–571
. 14.
Wang
, J. S.
, Wu
, C.
, and Liu
, X. J.
, 2010
, “Performance Evaluation of Parallel Manipulators: Motion/Force Transmissibility and Its Index
,” Mech. Mach. Theory
, 45
(10
), pp. 1462
–1476
. 15.
Li
, Q. C.
, Zhang
, N. B.
, and Wang
, F. B.
, 2017
, “New Indices for Optimal Design of Redundantly Actuated Parallel Manipulators
,” ASME J. Mech. Rob.
, 9
(1
), p. 011007
. 16.
Merlet
, J. P.
, 2006
, “Jacobian, Manipulability, Condition Number and Accuracy of Parallel Robots
,” ASME J. Mech. Des.
, 128
(1
), pp. 199
–206
. 17.
Yoshikawa
, T.
, 1985
, “Dynamic Manipulability of Robot Manipulators
,” Proceedings of the 1985 IEEE International Conference on Robotics and Automation
, St. Louis, MO
, Mar. 25–28
, pp. 1033
–1038
.18.
Yoshikawa
, T.
, 1990
, “Translational and Rotational Manipulability of Robotic Manipulators
,” Proceedings of the 1991 International Conference on Industrial Electronics, Control and Instrumentation
, Kobe, Japan
, Oct. 28–Nov. 1
, pp. 228
–233
.19.
Chen
, G. L.
, Yu
, W. D.
, Li
, Q. C.
, and Wang
, H.
, 2017
, “Dynamic Modeling and Performance Analysis of the 3-PRRU 1T2R Parallel Manipulator Without Parasitic Motion
,” Nonlinear Dyn.
, 90
(1
), pp. 339
–353
. 20.
Huang
, Z.
, and Li
, Q. C.
, 2003
, “Type Synthesis of Symmetrical Lower-Mobility Parallel Mechanisms Using the Constraint-Synthesis Method
,” Int. J. Rob. Res.
, 22
(1
), pp. 59
–79
.21.
Exechon World
, 2023
, “Structure Concept of Exechon PKM,” http://www.exechonworld.com/document/200804/article34.htm, Accessed May 21, 2023.22.
Merlet
, J. P.
, 1993
, “Direct Kinematics of Parallel Manipulators
,” IEEE Trans. Rob. Autom.
, 9
(6
), pp. 842
–846
. 23.
Gosselin
, C. M.
, and Angeles
, J.
, 1990
, “Singularity Analysis of Closed-Loop Kinematic Chains
,” IEEE Trans. Rob. Autom.
, 6
(3
), pp. 281
–290
. 24.
Zlatanov
, D.
, Bonev
, I. A.
, and Gosselin
, C. M.
, 2002
, “Constraint Singularities of Parallel Mechanisms
,” Proceedings of the 2002 IEEE International Conference on Robotics and Automation
, Washington, DC
, May 11–15
, pp. 496
–502
.25.
Liu
, X. J.
, and Wang
, J. S.
, 2007
, “A New Methodology for Optimal Kinematic Design of Parallel Mechanisms
,” Mech. Mach. Theory
, 42
(9
), pp. 1210
–1224
. Copyright © 2023 by ASME
You do not currently have access to this content.