Abstract

Large workpieces are important components of core equipment in aerospace and other fields, where the machining mainly focuses on the surfaces and inner cavities. However, it may be unsuitable for existing machining robots to directly achieve integrated machining, that is, not only the high-precision surface machining but also the machining of different inner cavities in a limited space. To satisfy these machining requirements, a new reconfigurable hybrid robot (RHR) is proposed, called the 3PRR-3PSS-UPU RHR, for machining the surface and inner cavity of large workpieces (where P, P, R, S, and U stand for the actuated prismatic joint, passive prismatic joint, revolute joint, spherical joint, and universal joint, respectively). The proposed RHR consists of two parallel manipulators (PMs), in which one is a spatial 3PRR PM with one translational degree-of-freedom (DOF) and the other is a 3PSS-UPU reconfigurable PM (RPM) with different configurations of two rotational and one translational (2R1T) DOFs using locking equipment, which is the main advantage of the designed robot. The inverse kinematics and singularities of two PMs are analyzed. The stiffness performance of the spatial 3PRR PM is compared with that of a moving slider with one translational DOF. By evaluating the workspace and motion/force transmissibility, the kinematic performance of two PMs is presented using several local and global indices, followed by the dimensional optimization of link parameters. Based on the structural characteristics and excellent performance, it can be inferred that the 3PRR-3PSS-UPU RHR has great potential for machining large workpieces.

References

1.
Zhu
,
D. H.
,
Feng
,
X. Z.
,
Xu
,
X. H.
,
Yang
,
Z. Y.
,
Li
,
W. L.
,
Yan
,
S. J.
, and
Ding
,
H.
,
2020
, “
Robotic Grinding of Complex Components: A Step Towards Efficient and Intelligent Machining—Challenges, Solutions, and Applications
,”
Robot. Comput. Integr. Manuf.
,
65
, p.
101908
.
2.
Leali
,
F.
,
Vergnano
,
A.
,
Pini
,
F.
,
Pellicciari
,
M.
, and
Berselli
,
G.
,
2016
, “
A Workcell Calibration Method for Enhancing Accuracy in Robot Machining of Aerospace Parts
,”
Int. J. Adv. Manuf. Technol.
,
85
(
1–4
), pp.
47
55
.
3.
Chong
,
Z. H.
,
Xie
,
F. G.
,
Liu
,
X. J.
,
Wang
,
J. S.
, and
Niu
,
H. F.
,
2020
, “
Design of the Parallel Mechanism for a Hybrid Mobile Robot in Wind Turbine Blades Polishing
,”
Robot. Comput. Integr. Manuf.
,
61
, p.
101857
.
4.
Xu
,
P.
,
Cheung
,
C. F.
,
Li
,
B.
,
Wang
,
C. J.
, and
Zhao
,
C. Y.
,
2021
, “
Design, Dynamic Analysis, and Experimental Evaluation of a Hybrid Parallel–Serial Polishing Machine With Decoupled Motions
,”
ASME J. Mech. Rob.
,
13
(
6
), p.
061008
.
5.
Fu
,
Y. Z.
,
Gao
,
H.
,
Wang
,
X. P.
, and
Guo
,
D. M.
,
2017
, “
Machining the Integral Impeller and Blisk of Aero-Engines: A Review of Surface Finishing and Strengthening Technologies
,”
Chin. J. Mech. Eng.
,
30
(
3
), pp.
528
543
.
6.
Zhao
,
H.
,
Yu
,
X.
,
Li
,
X. F.
, and
Ding
,
H.
,
2019
, “
Weighted Sum of Vector Norms Based Contouring Control Method for Five-Axis CNC Machine Tools
,”
Precis. Eng. J. Int. Soc. Precis. Eng. Nanotechnol.
,
60
, pp.
93
103
.
8.
Möller
,
C.
,
Schmidt
,
H. C.
,
Koch
,
P.
,
Böhlmann
,
C.
,
Kothe
,
S.-M.
,
Wollnack
,
J.
, and
Hintze
,
W.
,
2017
, “
Machining of Large Scaled CFRP-Parts With Mobile CNC-Based Robotic System in Aerospace Industry
,”
Procedia Manuf.
,
14
, pp.
17
29
.
10.
Siciliano
,
B.
,
1999
, “
The Tricept Robot: Inverse Kinematics, Manipulability Analysis and Closed-Loop Direct Kinematics Algorithm
,”
Robotica
,
17
(
4
), pp.
437
445
.
11.
Li
,
Q. C.
,
Wu
,
W. F.
,
Xiang
,
J. N.
,
Li
,
H. J.
, and
Wu
,
C. Y.
,
2015
, “
A Hybrid Robot for Friction Stir Welding
,”
Proc. Inst. Mech. Eng. Part C
,
229
(
14
), pp.
2639
2650
.
12.
Mustafa
,
S. K.
,
Tao
,
P. Y.
,
Yang
,
G. L.
, and
Chen
,
I.-M.
,
2010
, “
A Geometrical Approach for Online Error Compensation of Industrial Manipulators
,”
Proceedings of the 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
Montréal, Canada
,
July 6–9
, pp.
738
743
.
13.
Pan
,
Z. X.
,
Zhang
,
H.
,
Zhu
,
Z.Q.
, and
Wang
,
J.J.
,
2006
, “
Chatter Analysis of Robotic Machining Process
,”
J. Mater. Process. Technol.
,
173
(
3
), pp.
301
309
.
14.
Nubiola
,
A.
, and
Bonev
,
I. A.
,
2013
, “
Absolute Calibration of an ABB IRB 1600 Robot Using a Laser Tracker
,”
Robot. Comput. Integr. Manuf.
,
29
(
1
), pp.
236
245
.
15.
Galletti
,
C.
, and
Fanghella
,
P.
,
2001
, “
Single-Loop Kinematotropic Mechanisms
,”
Mech. Mach. Theory
,
36
(
6
), pp.
743
761
.
16.
Zhang
,
L. P.
, and
Dai
,
J. S.
,
2009
, “
Reconfiguration of Spatial Metamorphic Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
1
), p.
011012
.
17.
Fanghella
,
P.
,
Galletti
,
C.
, and
Giannotti
,
E.
,
2006
,
Parallel Robots That Change Their Group of Motion
,
Springer Netherlands Press
,
Berlin
.
18.
Kong
,
X. W.
,
Gosselin
,
C. M.
, and
Richard
,
P.-L.
,
2007
, “
Type Synthesis of Parallel Mechanisms With Multiple Operation Modes
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
595
601
.
19.
Kong
,
X. W.
, and
Yu
,
J. J.
,
2015
, “
Type Synthesis of Two-Degrees-of-Freedom 3-4R Parallel Mechanisms With Both Spherical Translation Mode and Sphere-on-Sphere Rolling Mode
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041018
.
20.
Li
,
Q. C.
, and
Hervé
,
J. M.
,
2009
, “
Parallel Mechanisms With Bifurcation of Schoenflies Motion
,”
IEEE Trans. Robot.
,
25
(
1
), pp.
158
164
.
21.
Ruggiu
,
M.
, and
Kong
,
X. W.
,
2012
, “
Mobility and Kinematic Analysis of a Parallel Mechanism With Both PPR and Planar Operation Modes
,”
Mech. Mach. Theory
,
55
, pp.
77
90
.
22.
Zlatanov
,
D.
,
Bonev
,
I. A.
, and
Gosselin
,
C. M.
,
2002
, “
Constraint Singularities of Parallel Mechanisms
,”
Proceedings of the 2002 IEEE International Conference on Robotics and Automatio
,
Washington, DC
,
May 11–15
, pp.
496
502
.
23.
Zlatanov
,
D.
,
Bonev
,
I. A.
, and
Gosselin
,
C. M.
,
2002
, “Constraint Singularities as C-Space Singularities,”
Advances in Robot Kinematics
,
J.
Lenarčič
, and
F.
Thomas
, eds.,
Kluwer
,
Dordrecht
, pp.
183
192
.
24.
Dai
,
J. S.
, and
Jones
,
J. R.
,
1998
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
.
25.
Dai
,
J. S.
, and
Jones
,
J. R.
,
2005
, “
Matrix Representation of Topological Changes in Metamorphic Mechanisms
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
837
840
.
26.
Dai
,
J. S.
,
Wang
,
D. L.
, and
Cui
,
L.
,
2009
, “
Orientation and Workspace Analysis of the Multifingered Metamorphic Hand—Metahand
,”
IEEE Trans. Robot.
,
25
(
4
), pp.
942
947
.
27.
Gan
,
D. M.
,
Dai
,
J. S.
, and
Liao
,
Q. Z.
,
2009
, “
Mobility Change in Two Types of Metamorphic Parallel Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
041007
.
28.
Gan
,
D. M.
,
Dai
,
J. S.
, and
Caldwell
,
D.
,
2011
, “
Constraint-Based Limb Synthesis and Mobility-Change-Aimed Mechanism Construction
,”
ASME J. Mech. Des.
,
133
(
5
), p.
051001
.
29.
Gan
,
D. M.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2016
, “
Unified Kinematics and Optimal Design of a 3rRPS Metamorphic Parallel Mechanism With a Reconfigurable Revolute Joint
,”
Mech. Mach. Theory
,
96
(
2
), pp.
239
254
.
30.
Gan
,
D. M.
,
Dai
,
J. S.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2016
, “
Variable Motion/Force Transmissibility of a Metamorphic Parallel Mechanism With Reconfigurable 3T and 3R Motion
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051001
.
31.
Zhang
,
K. T.
,
Dai
,
J. S.
, and
Fang
,
Y. F.
,
2010
, “
Topology and Constraint Analysis of Phase Change in the Metamorphic Chain and Its Evolved Mechanism
,”
ASME J. Mech. Des.
,
132
(
12
), p.
121001
.
32.
Zhang
,
K. T.
,
Dai
,
J. S.
, and
Fang
,
Y. F.
,
2013
, “
Geometric Constraint and Mobility Variation of Two 3SvPSv Metamorphic Parallel Mechanisms
,”
ASME J. Mech. Des.
,
135
(
1
), p.
011001
.
33.
Carbonari
,
L.
,
Callegari
,
M.
,
Palmieri
,
G.
, and
Palpacelli
,
M.-C.
,
2014
, “
A New Class of Reconfigurable Parallel Kinematic Machines
,”
Mech. Mach. Theory
,
79
, pp.
173
183
.
34.
Carbonari
,
L.
,
Costa
,
D.
,
Palmieri
,
G.
, and
Palpacelli
,
M.-C.
,
2019
, “
Reconfigurability Analysis of a Class of Parallel Kinematics Machines
,”
ASME J. Mech. Rob.
,
11
(
2
), p.
021002
.
35.
Ye
,
W.
,
Fang
,
Y. F.
,
Zhang
,
K. T.
, and
Guo
,
S.
,
2016
, “
Mobility Variation of a Family of Metamorphic Parallel Mechanisms With Reconfigurable Hybrid Limbs
,”
Robot. Comput. Integr. Manuf.
,
41
, pp.
145
162
.
36.
Ye
,
W.
,
Chai
,
X. X.
, and
Zhang
,
K. T.
,
2020
, “
Kinematic Modeling and Optimization of a New Reconfigurable Parallel Mechanism
,”
Mech. Mach. Theory
,
149
, p.
103850
.
37.
Chai
,
X. H.
,
Kang
,
X.
,
Gan
,
D. M.
,
Yu
,
H. Y.
, and
Dai
,
J. S.
,
2021
, “
Six Novel 6R Metamorphic Mechanisms Induced From Three-Series-Connected Bennett Linkages That Vary Among Classical Linkages
,”
Mech. Mach. Theory
,
156
, p.
104133
.
38.
Jia
,
P.
,
Li
,
D. L.
,
Zhang
,
Y. K.
, and
Yang
,
C.
,
2022
, “
A Novel Reconfigurable Parallel Mechanism Constructed With Spatial Metamorphic Four-Link Mechanism
,”
Proc. Inst. Mech. Eng. Part C
,
236
(
8
), pp.
4120
4132
.
39.
Zhao
,
C.
,
Wang
,
K.
,
Zhao
,
H. F.
,
Guo
,
H. W.
, and
Liu
,
R. Q.
,
2022
, “
Kinematics, Dynamics, and Experiments of n(3RRlS) Reconfigurable Series-Parallel Manipulators for Capturing Space Noncooperative Targets
,”
ASME J. Mech. Rob.
,
14
(
6
), p.
060902
.
40.
Abadi
,
B. N. R.
, and
Carretero
,
J. A.
,
2023
, “
Modeling and Real-Time Motion Planning of a Class of Kinematically Redundant Parallel Mechanisms With Reconfigurable Platform
,”
ASME J. Mech. Rob.
,
15
(
2
), p.
021004
.
41.
Yoon
,
J.
,
Ryu
,
J.
, and
Lim
,
K.-B.
,
2006
, “
Reconfigurable Ankle Rehabilitation Robot for Various Exercises
,”
J. Robot. Syst.
,
22
(
S1
), pp.
S15
S33
.
42.
Tosi
,
D.
,
Legnani
,
G.
,
Pedrocchi
,
N.
,
Righettini
,
P.
, and
Giberti
,
H.
,
2010
, “
Cheope: A New Reconfigurable Redundant Manipulator
,”
Mech. Mach. Theory
,
45
(
4
), pp.
611
626
.
43.
Camacho-Arreguin
,
J. I.
,
Wang
,
M. F.
,
Russo
,
M.
,
Dong
,
X.
, and
Axinte
,
D.
,
2022
, “
Novel Reconfigurable Walking Machine Tool Enables Symmetric and Nonsymmetric Walking Configurations
,”
IEEE Trans. Mechatron.
,
27
(
6
), pp.
5495
5506
.
44.
Abadi
,
B. N. R.
,
Farid
,
M.
, and
Mahzoon
,
M.
,
2019
, “
Redundancy Resolution and Control of a Novel Spatial Parallel Mechanism With Kinematic Redundancy
,”
Mech. Mach. Theory
,
133
, pp.
112
126
.
45.
Huang
,
Z.
, and
Li
,
Q. C.
,
2002
, “
General Methodology for Type Synthesis of Symmetrical Lower-Mobility Parallel Manipulators and Several Novel Manipulators
,”
Int. J. Robot. Res.
,
21
(
2
), pp.
131
145
.
46.
Sciliano
,
B.
, and
Khatib
,
O.
,
2016
,
Springer Handbook of Robotics
,
Springer
,
Berlin
.
47.
Gosselin
,
C. M.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.
48.
Gosselin
,
C. M.
,
1990
, “
Stiffness Mapping for Parallel Manipulators
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
377
382
.
49.
Li
,
Q. C.
,
Zhang
,
N. B.
, and
Wang
,
F. B.
,
2017
, “
New Indices for Optimal Design of Redundantly Actuated Parallel Manipulators
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
011007
.
50.
Xu
,
L. M.
,
Chai
,
X. X.
,
Li
,
Q. C.
,
Zhang
,
L. A.
, and
Ye
,
W.
,
2019
, “
Design and Experimental Investigation of a New 2R1T Overconstrained Parallel Kinematic Machine With Actuation Redundancy
,”
ASME J. Mech. Rob.
,
11
(
3
), p.
031016
.
51.
Wang
,
J. S.
,
Wu
,
C.
, and
Liu
,
X. J.
,
2010
, “
Performance Evaluation of Parallel Manipulators: Motion/Force Transmissibility and Its Index
,”
Mech. Mach. Theory
,
45
(
10
), pp.
1462
1476
.
52.
Xu
,
L. M.
,
Li
,
Q. C.
,
Tong
,
J. H.
, and
Chen
,
Q. H.
,
2018
, “
Tex3: An 2R1T Parallel Manipulator With Minimum DOF of Joints and Fixed Linear Actuators
,”
Int. J. Precis. Eng. Manuf.
,
19
(
2
), pp.
227
238
.
53.
Chen
,
Q. H.
,
Chen
,
Z.
,
Chai
,
X. X.
, and
Li
,
Q. C.
,
2013
, “
Kinematic Analysis of a 3-Axis Parallel Manipulator: The P3
,”
Adv. Mech. Eng.
,
2013
, p.
589156
.
54.
Liu
,
X. J.
, and
Wang
,
J. S.
,
2007
, “
A New Methodology for Optimal Kinematic Design of Parallel Mechanisms
,”
Mech. Mach. Theory
,
42
(
9
), pp.
1210
1224
.
You do not currently have access to this content.