Abstract

As the micromanipulator of surgical robots works in a narrow space, it is difficult to install any position sensors at the end, so the position control and position detection cannot be accurately performed. A position estimator based on the parameter autonomous selection model is proposed to estimate the end position indirectly. First, a single joint principle prototype and a position estimator model are established through the 4DOF driving scheme of the micromanipulator and the cable-driven model. Second, the proposed parameter change model is combined with the parameter selection method to form a parameter autonomous selection model. Finally, a position estimator based on the parameter autonomous selection model is established. The experimental results show the maximum estimation error of the position estimator is 0.1928 deg. Compared with other position estimation methods, the position estimator proposed in this paper has higher accuracy and better robustness, which lays a foundation for the full closed-loop control of micromanipulator position.

References

1.
Mayor
,
N.
,
Coppola
,
A. S.
, and
Challacombe
,
B.
,
2022
, “
Past, Present and Future of Surgical Robotics
,”
Trends Urol. Men’s Health
,
13
(
1
), pp.
7
10
.
2.
Zhong
,
F.
,
Wang
,
Y.
,
Wang
,
Z.
, and
Liu
,
Y.-H.
,
2019
, “
Dual-Arm Robotic Needle Insertion With Active Tissue Deformation for Autonomous Suturing
,”
IEEE Rob. Autom. Lett.
,
4
(
3
), pp.
2669
2676
.
3.
Bouget
,
D.
,
Allan
,
M.
,
Stoyanov
,
D.
, and
Jannin
,
P.
,
2017
, “
Vision-Based and Marker-Less Surgical Tool Detection and Tracking: A Review of the Literature
,”
Med. Image Anal.
,
35
, pp.
633
654
.
4.
Aghakhani
,
N.
,
Geravand
,
M.
,
Shahriari
,
N.
,
Vendittelli
,
M.
, and
Oriolo
,
G.
,
2013
, “
Task Control With Remote Center of Motion Constraint for Minimally Invasive Robotic Surgery
,”
2013 IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, IEEE, pp.
5807
5812
.
5.
Wang
,
W.
,
Yu
,
L.
, and
Yang
,
J.
,
2019
, “
Linear Parameter Variant Modeling and Parameter Identification of a Cable-Driven Micromanipulator for Surgical Robot
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
233
(
5
), pp.
1828
1840
.
6.
Jin
,
L.
,
Duan
,
X.
,
Li
,
C.
,
Shi
,
Q.
,
Wen
,
H.
,
Wang
,
J.
, and
Li
,
H.
,
2021
, “
Design of a Novel Parallel Mechanism for Haptic Device
,”
ASME J. Mech. Rob.
,
13
(
4
), p.
045001
.
7.
Liu
,
C.
,
Tosun
,
T.
, and
Yim
,
M.
,
2021
, “
A Low-Cost, Highly Customizable Solution for Position Estimation in Modular Robots
,”
ASME J. Mech. Rob.
,
13
(
6
), p.
061004
.
8.
Ju
,
R.
,
Zhang
,
D.
,
Xu
,
J.
,
Yuan
,
H.
,
Miao
,
Z.
,
Zhou
,
M.
, and
Cao
,
Z.
,
2022
, “
Design, Modeling, and Kinematics Analysis of a Modular Cable-Driven Manipulator
,”
ASME J. Mech. Rob.
,
14
(
6
), p.
060903
.
9.
Zhang
,
W.
,
Li
,
H.
,
Cui
,
L.
,
Li
,
H.
,
Zhang
,
X.
,
Fang
,
S.
, and
Zhang
,
Q.
,
2021
, “
Research Progress and Development Trend of Surgical Robot and Surgical Instrument Arm
,”
Int. J. Med. Rob. Comput. Assist. Surg.
,
17
(
5
), p.
e2309
.
10.
Gao
,
Q.
, and
Sun
,
Z.
,
2021
, “
A Novel Design of Water-Activated Variable Stiffness Endoscopic Manipulator With Safe Thermal Insulation
,”
Actuators
,
10
(
6
), p.
130
.
11.
Feng
,
M.
,
Fu
,
Y.
,
Pan
,
B.
, and
Wang
,
S.
,
2010
, “
Design and Implementation of a Medical Robot for Celiac Minimally Invasive Surgery
,”
2010 IEEE International Conference on Robotics and Biomimetics
,
Tianjin, China
,
Dec. 14–18
, IEEE, pp.
47
52
.
12.
Yan
,
Y.
,
Yu
,
L.
,
Yuan
,
H.
, and
Xia
,
Y.
, “
Kinematic Decoupling Design and Analysis of a Cable-Driven Surgical Instrument
”.
13.
Lu
,
M.
,
Zhao
,
Y.
, and
Jiang
,
Y.
,
2017
, “
Design of Master-Slave Operation Robot Based on Impedance Control in Minimally Invasive Spinal Surgery
,”
Jiqiren/Robot
,
39
(
3
), pp.
371
376
.
14.
Cursi
,
F.
,
Bai
,
W.
,
Yeatman
,
E. M.
, and
Kormushev
,
P.
,
2022
, “
Optimization of Surgical Robotic Instrument Mounting in a Macro–Micro Manipulator Setup for Improving Task Execution
,”
IEEE Trans. Rob.
,
38
(
5
), pp.
2858
2874
.
15.
Zhang
,
Y.
,
Jeong
,
C.-S.
,
Kim
,
M.
, and
Jin
,
S.
,
2021
, “
Force-Free Control for Direct Teaching of a Surgical Assistant Robot End Effector With Wire-Driven Bidirectional Telescopic Mechanism
,”
Sensors
,
21
(
10
), p.
3498
.
16.
Xue
,
R.
,
Ren
,
B.
,
Yan
,
Z.
, and
Du
,
Z.
,
2017
, “
A Cable-Pulley System Modeling Based Position Compensation Control for a Laparoscope Surgical Robot
,”
Mech. Mach. Theory
,
118
, pp.
283
299
.
17.
Edwards
,
W.
,
Tang
,
G.
,
Tian
,
Y.
,
Draelos
,
M.
,
Izatt
,
J.
,
Kuo
,
A.
, and
Hauser
,
K.
,
2022
, “
Data-Driven Modelling and Control for Robot Needle Insertion in Deep Anterior Lamellar Keratoplasty
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
1526
1533
.
18.
Zou
,
S.
,
Pan
,
B.
,
Fu
,
Y.
, and
Guo
,
S.
,
2018
, “
Position Control and Vibration Suppression for Flexible-Joint Surgical Robot
,”
2018 3rd International Conference on Control, Robotics and Cybernetics (CRC)
,
Penang, Malaysia
,
Sept. 26–28
, IEEE, pp.
42
47
.
19.
Liang
,
Y.
,
Du
,
Z.
,
Wang
,
W.
, and
Sun
,
L.
,
2017
, “
A Novel Position Compensation Scheme for Cable-Pulley Mechanisms Used in Laparoscopic Surgical Robots
,”
Sensors
,
17
(
10
), p.
2257
.
20.
Mohammadzadegan
,
A. F.
,
Ashrafzadeh
,
F.
, and
Moodi
,
H.
,
2019
, “
Hybrid Force and Position Control of a 4DOF Surgical Robot With Disturbance Observer
,”
2019 27th Iranian Conference on Electrical Engineering (ICEE)
,
Yazd, Iran
,
Apr. 30–May 2
, IEEE, pp.
1052
1057
.
21.
Shi
,
H.
,
Liu
,
Q.
, and
Mei
,
X.
,
2021
, “
Accurate Parameter Estimation for Master–Slave Operation of a Surgical Robot
,”
Machines
,
9
(
10
), p.
213
.
22.
Peng
,
H.
,
Yang
,
X.
,
Su
,
Y.-H.
, and
Hannaford
,
B.
,
2020
, “
Real-Time Data Driven Precision Estimator for Raven-II Surgical Robot End Effector Position
,”
2020 IEEE International Conference on Robotics and Automation (ICRA)
,
Paris, France
,
May 31–Aug. 31
, IEEE, pp.
350
356
.
23.
Sun
,
Y.
,
Pan
,
B.
, and
Fu
,
Y.
,
2022
, “
Lightweight Deep Neural Network for Articulated Joint Detection of Surgical Instrument in Minimally Invasive Surgical Robot
,”
J. Digital Imag.
,
35
(
4
), pp.
1
15
.
24.
Leboutet
,
Q.
,
Roux
,
J.
,
Janot
,
A.
,
Guadarrama-Olvera
,
J. R.
, and
Cheng
,
G.
,
2021
, “
Inertial Parameter Identification in Robotics: A Survey
,”
Appl. Sci.
,
11
(
9
), p.
4303
.
25.
Zaman
,
H. R. R.
, and
Gharehchopogh
,
F. S.
,
2021
, “
An Improved Particle Swarm Optimization with Backtracking Search Optimization Algorithm for Solving Continuous Optimization Problems
,”
Eng. Comput.
,
38
(
Suppl 4
), pp.
2797
2831
.
26.
Yun
,
X.
,
Pang
,
Z.
,
Jiang
,
G.
, and
Mei
,
X.
,
2021
, “
Research on Identification of Unbalance Parameters of Rotor With Multi-Plane Using Improved Particle Swarm Optimization
,”
J. Braz. Soc. Mech. Sci. Eng.
,
43
(
2
), pp.
1
12
.
27.
Muthalif
,
A. G.
,
Razali
,
M. K. M.
,
Nordin
,
N. D.
, and
Hamid
,
S. B. A.
,
2021
, “
Parametric Estimation From Empirical Data Using Particle Swarm Optimization Method for Different Magnetorheological Damper Models
,”
IEEE Access
,
9
, pp.
72602
72613
.
28.
Xu
,
X.
, and
Lin
,
P.
,
2021
, “
Parameter Identification of Sound Absorption Model of Porous Materials Based on Modified Particle Swarm Optimization Algorithm
,”
PLoS One
,
16
(
5
), p.
e0250950
.
29.
Ardiansyah
,
A.
,
Ferdiana
,
R.
, and
Permanasari
,
A. E.
,
2022
, “
Mucpso: A Modified Chaotic Particle Swarm Optimization With Uniform Initialization for Optimizing Software Effort Estimation
,”
Appl. Sci.
,
12
(
3
), p.
1081
.
30.
Peng
,
Y.
,
Peng
,
X.-y.
, and
Liu
,
Z.-q.
,
2004
, “
Statistic Analysis on Parameter Efficiency of Particle Swarm Optimization
,”
Acta Electonica Sinica
,
32
(
2
), p.
209
.
31.
Wang
,
Y.
,
Liu
,
H.
,
Yu
,
Z.
, and
Tu
,
L.
,
2020
, “
An Improved Artificial Neural Network Based on Human-Behaviour Particle Swarm Optimization and Cellular Automata
,”
Expert Syst. Appl.
,
140
, p.
112862
.
32.
Guo
,
Q.
,
Chen
,
Z.
,
Yan
,
Y.
,
Xiong
,
W.
,
Jiang
,
D.
, and
Shi
,
Y.
,
2022
, “
Model Identification and Human-Robot Coupling Control of Lower Limb Exoskeleton With Biogeography-Based Learning Particle Swarm Optimization
,”
Int. J. Contr. Autom. Syst.
,
20
(
2
), pp.
589
600
.
33.
Kashyap
,
A. K.
, and
Parhi
,
D. R.
,
2021
, “
Particle Swarm Optimization Aided PID Gait Controller Design for a Humanoid Robot
,”
ISA Trans.
,
114
, pp.
306
330
.
34.
Hong
,
W.
,
Feng
,
F.
,
Xie
,
L.
, and
Yang
,
G.-Z.
,
2022
, “
A Two-Segment Continuum Robot With Piecewise Stiffness for Maxillary Sinus Surgery and Its Decoupling Method
,”
IEEE/ASME Trans. Mechatron.
,
27
(
6
), pp.
4440
4450
.
35.
Malgaca
,
L.
, and
Lök
,
Ş. İ.
,
2022
, “
Measurement and Modeling of a Flexible Manipulator for Vibration Control Using Five-Segment S-curve Motion
,”
Trans. Inst. Measure. Control
,
44
(
8
), pp.
1545
1556
.
You do not currently have access to this content.