Abstract

Soft robots can accomplish hand rehabilitation training to ensure better safety and compliance for hand rehabilitation. In this study, a wavy nonrotating soft actuator structure was proposed for hand rehabilitation, and an axial stiffener was added to the main structure of the actuator according to the function of the bamboo fiber. A physical model of the actuator was fabricated using a multistep casting molding method, and the performance of the designed soft actuator was tested experimentally. The results showed that the bending angle and contact force gradually increased with increasing pressure. The average maximum bending angle and contact force can reach 286 ± 14.3 deg and 1.04 ± 0.051 N, with a pressure of 72 kPa. Meanwhile, the bending torques of the soft actuator at each joint of the finger were tested, to verify that it can meet the needs of soft actuators for hand applications. Furthermore, the load lifting of the soft actuator with axial stiffeners can increase by 6 mm on average compared with a soft actuator without axial stiffeners under negative pressure. In conclusion, the pneumatic soft actuator can produce two different motion functions under the action of one cavity. In addition, a soft actuator with an axial stiffener can improve the load capacity under negative pressure. By assembling the actuators, a three-finger gripper was manufactured. The gripper could grasp and lift objects. Therefore, this work provides a new route for the development of pneumatic soft actuators and soft robots, which has efficient driving.

References

1.
Peng
,
Z.
, and
Huang
,
J.
,
2019
, “
Soft Rehabilitation and Nursing-Care Robots: A Review and Future Outlook
,”
Appl. Sci.
,
9
(
15
), p.
3102
.
2.
Liang
,
X.
,
Cheong
,
H.
,
Chui
,
C. K.
, and
Yeow
,
C. H.
,
2019
, “
A Fabric-Based Wearable Soft Robotic Limb
,”
ASME J. Mech. Rob.
,
11
(
3
), p.
031003
.
3.
Laschi
,
C.
,
Mazzolai
,
B.
, and
Cianchetti
,
M.
,
2016
, “
Soft Robotics: Technologies and Systems Pushing the Boundaries of Robot Abilities
,”
Sci. Robot.
,
1
(
1
), p.
eaah3690
.
4.
She
,
Y.
,
Li
,
C.
,
Cleary
,
J.
, and
Su
,
H. J.
,
2015
, “
Design and Fabrication of a Soft Robotic Hand With Embedded Actuators and Sensors
,”
ASME J. Mech. Rob.
,
7
(
2
), p.
021007
.
5.
McEvoy
,
M. A.
, and
Correll
,
N.
,
2015
, “
Materials That Couple Sensing, Actuation, Computation, and Communication
,”
Science
,
347
(
6228
), p.
1261689
.
6.
Pan
,
M.
,
Yuan
,
C.
,
Liang
,
X.
,
Dong
,
T.
,
Liu
,
T.
,
Zhang
,
J.
,
Zou
,
J.
,
Yang
,
H.
, and
Bowen
,
C.
,
2021
, “
SoftActuators and Robotic Devices for Rehabilitation and Assistance
,”
Adv. Intell. Syst.
,
4
(
4
), p.
2100140
.
7.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
467
475
.
8.
Yap
,
H. K.
,
Lim
,
J. H.
,
Goh
,
J. C. H.
, and
Yeow
,
C. H.
,
2016
, “
Design of a Soft Robotic Glove for Hand Rehabilitation of Stroke Patients With Clenched Fist Deformity Using Inflatable Plastic Actuators
,”
ASME J. Med. Dev.
,
10
(
4
), p.
044504
.
9.
Katzschmann
,
R. K.
,
Marchese
,
A. D.
, and
Rus
,
D.
,
2015
, “
Autonomous Object Manipulation Using a Soft Planar Grasping Manipulator
,”
Soft Robot.
,
2
(
4
), pp.
155
164
.
10.
Martinez
,
R. V.
,
Branch
,
J. L.
,
Fish
,
C. R.
,
Jin
,
L.
,
Shepherd
,
R. F.
,
Nunes
,
R. M. D.
,
Suo
,
Z.
, and
Whitesides
,
G. M.
,
2013
, “
Robotic Tentacles With Three-Dimensional Mobility Based on Flexible Elastomers
,”
Adv. Mater.
,
25
(
2
), pp.
205
212
.
11.
Lamping
,
F.
, and
de Payrebrune
,
K. M.
,
2022
, “
A Virtual Work Model for the Design and Parameter Identification of Cylindrical Pressure-Driven Soft Actuators
,”
ASME J. Mech. Rob.
,
14
(
3
), p.
031004
.
12.
Wang
,
J.
,
Liu
,
Z.
, and
Fei
,
Y.
,
2019
, “
Design and Testing of a Soft Rehabilitation Glove Integrating Finger and Wrist Function
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011015
.
13.
Mosadegh
,
B.
,
Polygerinos
,
P.
,
Keplinger
,
C.
,
Wennstedt
,
S.
,
Shepherd
,
R. F.
,
Gupta
,
U.
,
Shim
,
J.
,
Bertoldi
,
K.
,
Walsh
,
C. J.
, and
Whitesides
,
G. M.
,
2014
, “
Pneumatic Networks for Soft Robotics That Actuate Rapidly
,”
Adv. Funct. Mater.
,
24
(
15
), pp.
2163
2170
.
14.
Polygerinos
,
P.
,
Wang
,
Z.
,
Overvelde
,
J. T. B.
,
Galloway
,
K. C.
,
Wood
,
R. J.
,
Bertoldi
,
K.
, and
Walsh
,
C. J.
,
2015
, “
Modeling of Soft Fiber-Reinforced Bending Actuators
,”
IEEE Trans. Robot.
,
31
(
3
), pp.
778
789
.
15.
Polygerinos
,
P.
,
Lyne
,
S.
,
Wang
,
Z.
,
Nicolini
,
L. F.
,
Mosadegh
,
B.
,
Whitesides
,
G. M.
, and
Walsh
,
C. J.
,
2013
, “
Towards a Soft Pneumatic Glove for Hand Rehabilitation
,”
IEEE International Conference on Intelligent Robots and Systems
,
Tokyo, Japan
,
Nov. 3–7
, pp.
1512
1517
.
16.
Lotfiani
,
A.
,
Zhao
,
H.
,
Shao
,
Z.
, and
Yi
,
X.
,
2020
, “
Torsional Stiffness Improvement of a Soft Pneumatic Finger Using Embedded Skeleton
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011016
.
17.
Zhou
,
J.
,
Chen
,
Y.
,
Chen
,
X.
,
Wang
,
Z.
,
Li
,
Y.
, and
Liu
,
Y.
,
2020
, “
A Proprioceptive Bellows (PB) Actuator With Position Feedback and Force Estimation
,”
IEEE Robot. Autom. Lett.
,
5
(
2
), pp.
1867
1874
.
18.
Yap
,
H. K.
,
Ng
,
H. Y.
, and
Yeow
,
C. H.
,
2016
, “
High-Force Soft Printable Pneumatics for Soft Robotic Applications
,”
Soft Robot.
,
3
(
3
), pp.
144
158
.
19.
Mahl
,
T.
,
Hildebrandt
,
A.
, and
Sawodny
,
O.
,
2014
, “
A Variable Curvature Continuum Kinematics for Kinematic Control of the Bionic Handling Assistant
,”
IEEE Trans. Robot.
,
30
(
4
), pp.
935
949
.
20.
Hu
,
D.
,
Zhang
,
J.
,
Yang
,
Y.
,
Li
,
Q.
,
Li
,
D.
, and
Hong
,
J.
,
2020
, “
A Novel Soft Robotic Glove With Positive–Negative Pneumatic Actuator for Hand Rehabilitation
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM
,
Boston, MA
,
July 6–9
, pp.
1840
1847
.
21.
Guo
,
N.
,
Sun
,
Z.
,
Wang
,
X.
,
Yeung
,
E. H. K.
,
To
,
M. K. T.
,
Li
,
X.
, and
Hu
,
Y.
,
2020
, “
Simulation Analysis for Optimal Design of Pneumatic Bellow Actuators for Soft-Robotic Glove
,”
Biocybern. Biomed. Eng.
,
40
(
4
), pp.
1359
1368
.
22.
Zhao
,
S.
,
Lei
,
Y.
,
Wang
,
Z.
,
Zhang
,
J.
,
Liu
,
J.
,
Zheng
,
P.
,
Gong
,
Z.
, and
Sun
,
Y.
,
2021
, “
Biomimetic Artificial Joints Based on Multi-Material Pneumatic Actuators Developed for Soft Robotic Finger Application
,”
Micromachines
,
12
(
12
), p.
1593
.
23.
Marchese
,
A. D.
,
Katzschmann
,
R. K.
, and
Rus
,
D.
,
2015
, “
A Recipe for Soft Fluidic Elastomer Robots
,”
Soft Robot.
,
2
(
1
), pp.
7
25
.
24.
Peele
,
B. N.
,
Wallin
,
T. J.
,
Zhao
,
H.
, and
Shepherd
,
R. F.
,
2015
, “
3D Printing Antagonistic Systems of Artificial Muscle Using Projection Stereolithography
,”
Bioinspiration Biomimetics
,
10
(
5
), p.
55003
.
25.
Chen
,
W.
,
Xiong
,
C.
,
Liu
,
C.
,
Li
,
P.
, and
Chen
,
Y.
,
2019
, “
Fabrication and Dynamic Modeling of Bidirectional Bending Soft Actuator Integrated With Optical Waveguide Curvature Sensor
,”
Soft Robot.
,
6
(
4
), pp.
495
506
.
26.
Fatahillah
,
M.
,
Oh
,
N.
, and
Rodrigue
,
H.
,
2020
, “
A Novel Soft Bending Actuator Using Combined Positive and Negative Pressures
,”
Front. Bioeng. Biotechnol.
,
8
, p.
472
.
27.
Rehman
,
T.
,
Faudzi
,
A. A. M.
,
Dewi
,
D. E. O.
, and
Ali
,
M. S. M.
,
2017
, “
Design, Characterization, and Manufacturing of Circular Bellows Pneumatic Soft Actuator
,”
Int. J. Adv. Manuf. Technol.
,
93
(
9–12
), pp.
4295
4304
.
28.
Xavier
,
M. S.
,
Fleming
,
A. J.
, and
Yong
,
Y. K.
,
2021
, “
Finite Element Modeling of Soft Fluidic Actuators: Overview and Recent Developments
,”
Adv. Intell. Syst.
,
3
(
2
), p.
2000187
.
29.
Liu
,
D.
,
Wang
,
M.
, and
Cong
,
M.
,
2019
, “
Design and Application of Integrated Parabolic Soft Actuator
,”
Ind. Rob.
,
46
(
6
), pp.
792
799
.
30.
Hao
,
Y.
,
Wang
,
T.
,
Ren
,
Z.
,
Gong
,
Z.
,
Wang
,
H.
,
Yang
,
X.
,
Guan
,
S.
, and
Wen
,
L.
,
2017
, “
Modeling and Experiments of a Soft Robotic Gripper in Amphibious Environments
,”
Int. J. Adv. Robot. Syst.
,
14
(
3
), pp.
1
12
.
31.
Sun
,
Z.
,
Guo
,
Z.
, and
Tang
,
W.
,
2019
, “
Design of Wearable Hand Rehabilitation Glove With Soft Hoop-Reinforced Pneumatic Actuator
,”
J. Cent. South Univ.
,
26
(
1
), pp.
106
119
.
32.
Hao
,
Y.
,
Gong
,
Z.
,
Xie
,
Z.
,
Guan
,
S.
,
Yang
,
X.
,
Wang
,
T.
, and
Wen
,
L.
,
2018
, “
A Soft Bionic Gripper With Variable Effective Length
,”
J. Bionic Eng.
,
15
(
2
), pp.
220
235
.
33.
Cheng
,
P.
,
Ye
,
Y.
,
Yan
,
B.
,
Lu
,
Y.
, and
Wu
,
C.
,
2022
, “
Eccentric High-Force Soft Pneumatic Bending Actuator for Finger-Type Soft Grippers
,”
ASME J. Mech. Rob.
,
14
(
6
), p.
061006
.
34.
Steck
,
D.
,
Qu
,
J.
,
Kordmahale
,
S. B.
,
Tscharnuter
,
D.
,
Muliana
,
A.
, and
Kameoka
,
J.
,
2019
, “
Mechanical Responses of Ecoflex Silicone Rubber: Compressible and Incompressible Behaviors
,”
J. Appl. Polym. Sci.
,
136
(
5
), pp.
1
11
.
35.
Martins
,
P. A. L. S.
,
Jorge
,
R. M. N.
, and
Ferreira
,
A. J. M.
,
2006
, “
A Comparative Study of Several Material Models for Prediction of Hyperelastic Properties: Application to Silicone-Rubber and Soft Tissues
,”
Strain
,
42
(
3
), pp.
135
147
.
36.
Wakimoto
,
S.
,
Suzumori
,
K.
, and
Ogura
,
K.
,
2011
, “
Miniature Pneumatic Curling Rubber Actuator Generating Bidirectional Motion With One Air-Supply Tube
,”
Adv. Robot.
,
25
(
9–10
), pp.
1311
1330
.
37.
Zhou
,
Y.
,
Headings
,
L. M.
, and
Dapino
,
M. J.
,
2022
, “
Modeling of Soft Robotic Grippers Integrated With Fluidic Prestressed Composite Actuators
,”
ASME J. Mech. Rob.
,
14
(
3
), p.
031001
.
38.
Heung
,
H. L.
,
Tang
,
Z. Q.
,
Shi
,
X. Q.
,
Tong
,
K. Y.
, and
Li
,
Z.
,
2020
, “
Soft Rehabilitation Actuator With Integrated Post-Stroke Finger Spasticity Evaluation
,”
Front. Bioeng. Biotechnol.
,
8
, p.
111
.
39.
Jiang
,
T.
,
Shang
,
J.
,
Tang
,
L.
, and
Wang
,
Z.
,
2016
, “
Thickness Optimization of Auricular Silicone Scaffold Based on Finite Element Analysis
,”
J. Mech. Behav. Biomed. Mater.
,
53
, pp.
397
402
.
40.
Wenchuan
,
Z.
,
Yu
,
Z.
, and
Ning
,
W.
,
2021
, “
Development and Performance Analysis of Pneumatic Soft-Bodied Bionic Actuator
,”
Appl Bionics Biomech.
,
2021
, p.
8860550
.
41.
Chen
,
C.
,
Li
,
Z.
,
Mi
,
R.
,
Dai
,
J.
,
Xie
,
H.
,
Pei
,
Y.
,
Li
,
J.
, et al
,
2020
, “
Rapid Processing of Whole Bamboo With Exposed, Aligned Nanofibrils Toward a High-Performance Structural Material
,”
ACS Nano
,
14
(
5
), pp.
5194
5202
.
42.
Janssen
,
J. J. A.
,
2012
,
Mechanical Properties of Bamboo
,
Springer, Dordrecht, Netherlands
.
43.
Tang
,
T.
,
Zhang
,
B.
,
Liu
,
X.
,
Wang
,
W.
,
Chen
,
X.
, and
Fei
,
B.
,
2019
, “
Synergistic Effects of Tung Oil and Heat Treatment on Physicochemical Properties of Bamboo Materials
,”
Sci. Rep.
,
9
(
1
), pp.
1
11
.
44.
Schmitt
,
F.
,
Piccin
,
O.
,
Barbé
,
L.
, and
Bayle
,
B.
,
2018
, “
Soft Robots Manufacturing: A Review
,”
Front. Robot. AI
,
5
, p.
84
.
45.
Shi
,
X. Q.
,
Heung
,
H. L.
,
Tang
,
Z. Q.
,
Tong
,
K. Y.
, and
Li
,
Z.
,
2020
, “
Verification of Finger Joint Stiffness Estimation Method With Soft Robotic Actuator
,”
Front. Bioeng. Biotechnol.
,
8
, pp.
1
12
.
46.
Kamper
,
D. G.
, and
Rymer
,
W. Z.
,
2001
, “
Impairment of Voluntary Control of Finger Motion Following Stroke: Role of Inappropriate Muscle Coactivation
,”
Muscle Nerve
,
24
(
5
), pp.
673
681
.
47.
Wang
,
J.
,
Fei
,
Y.
, and
Pang
,
W.
,
2019
, “
Design, Modeling, and Testing of a Soft Pneumatic Glove With Segmented PneuNets Bending Actuators
,”
IEEE/ASME Trans. Mechatron.
,
24
(
3
), pp.
990
1001
.
48.
Yang
,
F.
,
Ruan
,
Q.
,
Man
,
Y.
,
Xie
,
Z.
,
Yue
,
H.
,
Li
,
B.
, and
Liu
,
R.
,
2020
, “
Design and Optimize of a Novel Segmented Soft Pneumatic Actuator
,”
IEEE Access
,
8
, pp.
122304
122313
.
49.
Park
,
W.
,
Seo
,
S.
, and
Bae
,
J.
,
2019
, “
A Hybrid Gripper With Soft Material and Rigid Structures
,”
IEEE Robot. Autom. Lett.
,
4
(
1
), pp.
65
72
.
50.
Sedal
,
A.
,
Bruder
,
D.
,
Bishop-Moser
,
J.
,
Vasudevan
,
R.
, and
Kota
,
S.
,
2018
, “
A Continuum Model for Fiber-Reinforced Soft Robot Actuators
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
024501
.
51.
Wang
,
Z.
,
Torigoe
,
Y.
, and
Hirai
,
S.
,
2017
, “
A Prestressed Soft Gripper: Design, Modeling, Fabrication, and Tests for Food Handling
,”
IEEE Robot. Autom. Lett.
,
2
(
4
), pp.
1909
1916
.
You do not currently have access to this content.