Abstract

In recent years, there has been an increased interest in automating construction tasks to produce more affordable houses at an increased production rate. With this in mind, this article explores the design of a suspended cable-driven parallel robot (CDPR) used as an automated platform for in situ construction. The selected robot topology arranges pairs of cables in parallel to connect the frame and mobile platform. This forms a series of parallelograms that restrict the mobile platform to a pure translational motion so long as the cables are maintained in tension. Contrary to previous works, the CDPR is parameterized to allow more freedom in the definition of the orientation of the parallelograms. The CDPR is designed based on workspace and kinematic sensitivity requirements, while avoiding singularities and mechanical interferences throughout the robot’s desired workspace. The result is an optimal CDPR based on the targeted 3D printing and pick-and-place tasks. It is shown that the parallelogram’s orientation can be selected to improve the robot’s kinematic sensitivity.

References

1.
Brown
,
G. W.
,
1986
, “Suspension System for Supporting and Conveying Equipment, Such as a Camera,” https://patents.google.com/patent/US4625938A/en, Accessed June 22, 2022.
2.
Lamaury
,
J.
, and
Gouttefarde
,
M.
,
2013
, “
Control of a Large Redundantly Actuated Cable-Suspended Parallel Robot
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, pp.
4659
4664
.
3.
Albus
,
J. S.
,
Bostelman
,
R. V.
, and
Dagalakis
,
N.
,
1992
, “
The NIST ROBOCRANE
,”
J. Robot. Syst.
,
10
(
5
), pp.
709
724
.
4.
Pott
,
A.
,
Mütherich
,
H.
,
Kraus
,
W.
,
Schmidt
,
V.
,
Miermeister
,
P.
, and
Verl
,
A.
,
2013
, “IPAnema: A Family of Cable-Driven Parallel Robots for Industrial Applications,”
Cable-Driven Parallel Robots
(
Mechanisms and Machine Science
),
Bruckmann
,
T.
, and
Pott
,
A.
, eds.,
Springer
,
Berlin/Heidelberg, Germany
, pp.
119
134
.
5.
Bruckmann
,
T.
, and
Boumann
,
R.
,
2021
, “
Simulation and Optimization of Automated Masonry Construction Using Cable Robots
,”
Adv. Eng. Inform.
,
50
, p.
101388
.
6.
Iturralde
,
K.
,
Feucht
,
M.
,
Illner
,
D.
,
Hu
,
R.
,
Pan
,
W.
,
Linner
,
T.
,
Bock
,
T.
, et al.,
2022
, “
Cable-Driven Parallel Robot for Curtain Wall Module Installation
,”
Autom. Constr.
,
138
, p.
104235
.
7.
Bosscher
,
P.
,
Williams
,
R. L.
,
Bryson
,
L. S.
, and
Castro-Lacouture
,
D.
,
2007
, “
Cable-Suspended Robotic Contour Crafting System
,”
Autom. Constr.
,
17
(
1
), pp.
45
55
.
8.
Izard
,
J.-B.
,
Dubor
,
A.
,
Hervé
,
P.-E.
,
Cabay
,
E.
,
Culla
,
D.
,
Rodriguez
,
M.
, and
Barrado
,
M.
,
2017
, “
Large-Scale 3D Printing With Cable-Driven Parallel Robots
,”
Constr. Robot.
,
1
(
1
), pp.
69
76
.
9.
Pott
,
A.
,
Tempel
,
P.
,
Verl
,
A.
, and
Wulle
,
F.
,
2019, Design
, “Implementation and Long-Term Running Experiences of the Cable-Driven Parallel Robot CaRo Printer,”
Proceedings of Cable-Driven Parallel Robots
,
A.
Pott
, and
T.
Bruckmann
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
379
390
.
10.
Chesser
,
P. C.
,
Wang
,
P. L.
,
Vaughan
,
J. E.
,
Lind
,
R. F.
, and
Post
,
B. K.
,
2021
, “
Kinematics of a Cable-Driven Robotic Platform for Large-Scale Additive Manufacturing
,”
ASME J. Mech. Rob.
,
14
(
2
), p.
021010
.
11.
Pott
,
A.
,
2018
,
Cable-Driven Parallel Robots: Theory and Application
,
Vol. 120 of STAR
,
Springer
,
Cham, Switzerland
.
12.
Carricato
,
M.
, and
Merlet
,
J.-P.
,
2013
, “
Stability Analysis of Underconstrained Cable-Driven Parallel Robots
,”
IEEE Trans. Robot.
,
29
(
1
), pp.
288
296
.
13.
Bosscher
,
P.
,
Williams
,
R. L.
, and
Tummino
,
M.
,
2005
, “
A Concept for Rapidly-Deployable Cable Robot Search and Rescue Systems
,”
Proceedings of the ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 7: 29th Mechanisms and Robotics Conference, Parts A and B
,
Long Beach, CA
,
Sept. 24–28
, pp.
589
598
.
14.
Behzadipour
,
S.
, and
Khajepour
,
A.
,
2006
, “Cable-Based Robot Manipulators With Translational Degrees of Freedom,”
Industrial Robotics: Theory, Modelling and Control
, Sam Cubero ed.,
INTECH Open Access Publisher
,
Germany
, pp.
211
236
.
15.
Alikhani
,
A.
,
Behzadipour
,
S.
,
Vanini
,
S. A. S.
, and
Alasty
,
A.
,
2009
, “
Workspace Analysis of a Three DOF Cable-Driven Mechanism
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
041005
.
16.
Castelli
,
G.
,
Ottaviano
,
E.
, and
Rea
,
P.
,
2014
, “
A Cartesian Cable-Suspended Robot for Improving End-Users’ Mobility in an Urban Environment
,”
Robot. Comput. Integr. Manuf.
,
30
(
3
), pp.
335
343
.
17.
Vu
,
D.-S.
,
Barnett
,
E.
,
Zaccarin
,
A.-M.
, and
Gosselin
,
C.
,
2018
, “On the Design of a Three-DOF Cable-Suspended Parallel Robot Based on a Parallelogram Arrangement of the Cables,”
Proceedings of Cable-Driven Parallel Robots
,
C.
Gosselin
,
P.
Cardou
,
T.
Bruckmann
, and
A.
Pott
, eds.
Springer International Publishing
,
Cham, Switzerland
, pp.
319
330
.
18.
Vu
,
D.-S.
,
Barnett
,
E.
, and
Gosselin
,
C.
,
2019
, “
Experimental Validation of a Three-Degree-of-Freedom Cable-Suspended Parallel Robot for Spatial Translation With Constant Orientation
,”
ASME J. Mech. Rob.
,
11
(
2
), p.
024502
.
19.
Mottola
,
G.
,
Gosselin
,
C.
, and
Carricato
,
M.
,
2019
, “
Dynamically Feasible Motions of a Class of Purely-Translational Cable-Suspended Parallel Robots
,”
Mech. Mach. Theory.
,
132
, pp.
193
206
.
20.
Mottola
,
G.
,
Gosselin
,
C.
, and
Carricato
,
M.
,
2019
, “
Effect of Actuation Errors on a Purely-Translational Spatial Cable-Driven Parallel Robot
,”
Proceedings of the IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems
,
Suzhou, China
,
July 29–Aug. 2
, pp.
701
707
.
21.
Verhoeven
,
R.
,
Hiller
,
M.
, and
Tadokoro
,
S.
,
1998
, “Workspace, Stiffness, Singularities and Classification of Tendon-Driven Stewart Platforms,”
Advances in Robot Kinematics: Analysis and Control
,
Lenarčič
,
J.
, and
Husty
,
M. L.
, eds.,
Springer Netherlands
,
Dordrecht
, pp.
105
114
.
22.
Gouttefarde
,
M.
,
Merlet
,
J.-P.
, and
Daney
,
D.
,
2006
, “Determination of the Wrench-Closure Workspace of 6-DOF Parallel Cable-Driven Mechanisms,”
Proceedings of Advances in Robot Kinematics
,
J.
Lennarčič
, and
B.
Roth
, eds.,
Springer Netherlands
,
Dordrecht
, pp.
315
322
.
23.
Fattah
,
A.
, and
Agrawal
,
S. K.
,
2004
, “
On the Design of Cable-Suspended Planar Parallel Robots
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
1021
1028
.
24.
Ebert-Uphoff
,
I.
, and
Voglewede
,
P.
,
2004
, “
On the Connections Between Cable-Driven Robots, Parallel Manipulators and Grasping
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
New Orleans, LA
,
Apr. 26–May 1
, Vol. 5, pp.
4521
4526
.
25.
Bosscher
,
P.
,
Riechel
,
A.
, and
Ebert-Uphoff
,
I.
,
2006
, “
Wrench-Feasible Workspace Generation for Cable-Driven Robots
,”
IEEE Trans. Robot.
,
22
(
5
), pp.
890
902
.
26.
Gouttefarde
,
M.
,
Daney
,
D.
, and
Merlet
,
J.-P.
,
2011
, “
Interval-Analysis-Based Determination of the Wrench-Feasible Workspace of Parallel Cable-Driven Robots
,”
IEEE Trans. Robot.
,
27
(
1
), pp.
1
13
.
27.
Yoshikawa
,
T.
,
1985
, “
Manipulability of Robotic Mechanisms
,”
The Int. J. Robot. Res.
,
4
(
2
), pp.
3
9
.
28.
Salisbury
,
J. K.
, and
Craig
,
J. J.
,
1982
, “
Articulated Hands: Force Control and Kinematic Issues
,”
Int. J. Robot. Res.
,
1
(
1
), pp.
4
17
.
29.
Khan
,
W. A.
, and
Angeles
,
J.
,
2005
, “
The Kinetostatic Optimization of Robotic Manipulators: The Inverse and the Direct Problems
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
168
178
.
30.
Pond
,
G.
, and
Carretero
,
J. A.
,
2006
, “
Formulating Jacobian Matrices for the Dexterity Analysis of Parallel Manipulators
,”
Mech. Mach. Theory.
,
41
(
12
), pp.
1505
1519
.
31.
Cardou
,
P.
,
Bouchard
,
S.
, and
Gosselin
,
C.
,
2010
, “
Kinematic-Sensitivity Indices for Dimensionally Nonhomogeneous Jacobian Matrices
,”
IEEE Trans. Robot.
,
26
(
1
), pp.
166
173
.
32.
Saadatzi
,
M. H.
,
Masouleh
,
M. T.
,
Taghirad
,
H. D.
,
Gosselin
,
C.
, and
Cardou
,
P.
,
2011
, “
Geometric Analysis of the Kinematic Sensitivity of Planar Parallel Mechanisms
,”
Trans. Canad. Soc. Mech. Eng.
,
35
(
4
), pp.
477
490
.
33.
McDonald
,
E.
,
Beites
,
S.
, and
Arsenault
,
M.
,
2022
, “CDPR Studio: A Parametric Design Tool for Simulating Cable-Suspended Parallel Robots,”
Proceedings of Computer-Aided Architectural Design. Design Imperatives: The Future Is Now
,
D.
Gerber
,
E.
Pantazis
,
B.
Bogosian
,
A.
Nahmad
, and
C.
Miltiadis
, eds.,
Springer
,
Singapore
, pp.
344
359
. 10.1007/978-981-19-1280-1_22.
34.
Barnett
,
E.
, and
Gosselin
,
C.
,
2015
, “
Large-Scale 3D Printing With a Cable-Suspended Robot
,”
Addit. Manuf.
,
7
, pp.
27
44
.
35.
Saber
,
O.
,
2015
, “
A Spatial Translational Cable Robot
,”
ASME J. Mech. Rob.
,
7
(
3
), p.
031006
.
36.
Verhoeven
,
R.
,
2004
, “
Analysis of the Workspace of Tendon-Based Stewart Platforms
,” Ph.D. thesis,
University of Duisburg-Essen
,
Duisburg, Germany
.
37.
Gouttefarde
,
M.
,
Lamaury
,
J.
,
Reichert
,
C.
, and
Bruckmann
,
T.
,
2015
, “
A Versatile Tension Distribution Algorithm for n-DOF Parallel Robots Driven by n + 2 Cables
,”
IEEE Trans. Robot.
,
31
(
6
), pp.
1444
1457
.
38.
Merlet
,
J.-P.
,
2006
,
Parallel Robots
, 2nd ed,
Springer
,
Dordrecht, Netherlands
.
39.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE. Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.
40.
Tang
,
L.
,
Shi
,
P.
,
Wu
,
L.
,
Wu
,
X.
, and
Tang
,
X.
,
2019
, “
Singularity Analysis on a Special Class of Cable-Suspended Parallel Mechanisms With Pairwise Cable Arrangement and Actuation Redundancy
,”
ASME J. Mech. Des.
,
142
(
2
), p.
024501
.
You do not currently have access to this content.