Abstract

This paper proposes a novel, reconfigurable parallel kinematics machine with three degrees of freedom that can be used for various three-axis manipulation tasks, including machining. By locking some joints, the proposed parallel kinematics machine (PKM) can be transformed into four topologies with eight configurations to attain certain kinematic properties while keeping the number of its degrees of freedom unchanged. Either the proximal or intermediate prismatic joints of the reconfigurable PKM can be actuated. Some of the configurations are orthogonal configurations having a large rectangular cuboid workspace, and some other configurations are non-orthogonal configurations which provide the capability to perform a machining task to a large workpiece in various positions with respect to the machine. Accordingly, the proposed machine can be transformed from an orthogonal machine to a non-orthogonal machine with the advantages of each. The mobility of the various topologies of the reconfigurable PKM is rigorously analyzed using the screw theory. The workspace is analyzed using a graphical approach and verified by a computational approach. The pose kinematics shows that the various topologies have unified kinematics. The differential kinematics shows that the singularities in the various configurations occur at the workspace boundary. Similarly, the stiffness analysis shows that the low-stiffness postures occur around the workspace boundary. Accordingly, a used workspace far from the workspace boundary easily avoids the singularities and the low stiffness.

References

1.
Hunt
,
K. H.
,
1983
, “
Structural Kinematics of in-Parallel-Actuated Robot Arms
,”
ASME J. Mech. Des.
,
105
(
4
), pp.
705
712
.
2.
Tsai
,
L.-W.
,
1996
, “Kinematics of a Three-DOF Platform with Three Extensible Limbs,”
Recent Advances in Robot Kinematics
,
J.
Lenarcic
, and
V. P.
Castelli
, eds.,
Springer
,
Dordrecht
, pp.
401
410
.
3.
Neumann
,
K. E.
,
2002
, “
Tricept Application
,”
Proceedings of the 3rd Chemnitz Parallel Kinematics Seminar
,
Zwickau, Germany
, pp.
547
551
.
4.
Schoppe
,
E.
,
Ponisch
,
A.
,
Maier
,
V.
,
Puchtler
,
T.
, and
Ihlenfeldt
,
S.
,
2002
, “Tripod Machine SKM 400 Design, Calibration and Practical Application,”
Parallel Kinematics Seminar: Development Methods and Application Experience of Parallel Kinematics
,
Chemnitz, Germany
,
Apr. 23–25
, pp.
579
594
.
5.
Wang
,
M.
,
Liu
,
H.
, and
Huang
,
T.
,
2017
, “
An Approach for the Lightweight Design of a 3-SPR Parallel Mechanism
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
051016
.
6.
Huang
,
T.
,
Li
,
M.
,
Zhao
,
X. M.
,
Mei
,
J. P.
,
Chetwynd
,
D. G.
, and
Hu
,
S. J.
,
2005
, “
Conceptual Design and Dimensional Synthesis for a 3-DOF Module of the TriVariant-a Novel 5-DOF Reconfigurable Hybrid Robot
,”
IEEE Trans. Rob.
,
21
(
3
), pp.
449
456
.
7.
Bi
,
Z. M.
, and
Jin
,
Y.
,
2011
, “
Kinematic Modeling of Exechon Parallel Kinematic Machine
,”
Rob. Comput. Integr. Manuf.
,
27
(
1
), pp.
186
193
.
8.
Dong
,
C.
,
Liu
,
H.
,
Yue
,
W.
, and
Huang
,
T.
,
2018
, “
Stiffness Modeling and Analysis of a Novel 5-DOF Hybrid Robot
,”
Mech. Mach. Theory
,
125
, pp.
80
93
.
9.
Tonshoff
,
H. K.
,
Grendel
,
H.
, and
Kaak
,
R.
,
1999
, “Structure and characteristics of the hybrid manipulator George V,”
Parallel Kinematic Machines
,
C. R.
Boer
,
L.
Molinari-Tosatti
, and
K. S.
Smith
, eds.,
Springer-Verlag
,
London
, pp.
365
376
.
10.
Wahl
,
J.
,
2000
, “
Articulated Tool Head
,” WIPO Patent no. WO/2000/025976.
11.
Li
,
Y.
,
Wang
,
J.
,
Liu
,
X.-J.
, and
Wang
,
L.-P.
,
2010
, “
Dynamic Performance Comparison and Counterweight Optimization of two 3DOF Parallel Manipulators for a new Hybrid Machine Tool
,”
Mech. Mach. Theory
,
45
(
11
), pp.
1668
1680
.
12.
Czwielong
,
T.
, and
Zarske
,
W.
,
2002
, “
PEGASUS—Incorporating PKM Into Wood-Working
,”
Proceedings of the PKS Chemnitz Parallel Kinematic Seminar
,
Chemnitz, Germany
.
13.
Martin
,
Y. S.
,
Gimenez
,
M.
,
Rauch
,
M.
, and
Hascoet
,
J.-Y.
,
2006
, “
Verne—A New 5-Axes Hybrid Architecture Machining Centre
,”
Proceedings of the PKS Chemnitz Parallel Kinematic Seminar
,
Chemnitz, Germany
.
14.
Hebsacker
,
M.
,
Treib
,
T.
,
Zirn
,
O.
, and
Honegger
,
M.
,
1999
, “Hexaglide 6 DOF and Triaglide 3 DOF Parallel Manipulators,”
Parallel Kinematic Machines, Advanced Manufacturing
,
C. R.
Boër
,
L.
Molinari-Tosatti
, and
K. S.
Smith
, eds.,
Springer
,
London
, pp.
345
355
.
15.
Paskhevich
,
A.
,
Wenger
,
P.
, and
Chablat
,
D.
,
2007
, “
Kinematic and Stiffness Analysis of the Orthoglide, a PKM with Simple, Regular Workspace and Homogeneous Performances
,”
International Conference on Robotics and Automation (ICRA)
,
Rome, Italy
,
IEEE
.
16.
Gosselin
,
C. M.
,
Kong
,
X.
,
Foucault
,
S.
, and
Bonev
,
I. A.
,
2004
, “
A Fully Decoupled 3-DOF Translational Parallel Mechanism
,”
Parallel Kinematic Machines International Conference
,
Chemnitz, Germany
,
Apr. 20–21
, pp.
595
610
.
17.
Stan
,
S.-D.
,
Manic
,
M.
,
Maties
,
V.
, and
Balan
,
R.
,
2008
, “
Kinematics Analysis, Design, and Control of an Isoglide3 Parallel Robot (IG3PR)
,”
IECON 2008, The 34th Annual Conference of the IEEE Industrial Electronics Society
,
Orlando
.
18.
Hervé
,
J.-M.
, and
Sparacino
,
F.
,
1992
, “
Star: A New Concept in Robotics
,”
Proceedings of the Third International Workshop on Advances in Robot Kinematics
,
Ferrara, Italy
.
19.
Liu
,
X.-J.
,
Wang
,
J.
,
Gao
,
F.
, and
Wang
,
L.-P.
,
2001
, “
On the Analysis of a new Spatial Three Degrees of Freedom Parallel Manipulator
,”
IEEE Trans. Rob. Autom.
,
17
(
6
), pp.
959
968
.
20.
Bi
,
Z. M.
, and
Wang
,
L.
,
2009
, “
Optimal Design of Reconfigurable Parallel Machining Systems
,”
Rob. Comput. Integr. Manuf.
,
25
(
6
), pp.
951
961
.
21.
Tosi
,
D.
,
Legnani
,
G.
,
Pedrocchi
,
N.
,
Righettini
,
P.
, and
Giberti
,
H.
,
2010
, “
Cheope: A new Reconfigurable Redundant Manipulator
,”
Mech. Mach. Theory
,
45
(
4
), pp.
611
626
.
22.
Wohlhart
,
K.
,
1996
, “Kinematotropic Linkages,”
Advances in Robot Kinematics
,
J.
Lenarcic
, and
V. P.
Castelli
, eds.,
Springer
,
Dordrecht
, pp.
359
368
.
23.
Zeng
,
Q.
, and
Ehmann
,
K. F.
,
2014
, “
Design of Parallel Hybrid Loop Manipulators with Kinematotropic Property and Deployability
,”
Mech. Mach. Theory
,
71
, pp.
1
26
.
24.
Grosch
,
P.
,
Di Gregorio
,
R.
,
López
,
J.
, and
Thomas
,
F.
,
2010
, “
Motion Planning for a Novel Reconfigurable Parallel Manipulator with Lockable Revolute Joints
,”
Proceedings on 2010 IEEE International Conference on Robotics and Automation, IEEE
,
Anchorage, AK
,
May 3–7
, pp.
4697
4702
.
25.
Ye
,
W.
,
Fang
,
Y.
,
Zhang
,
K.
, and
Guo
,
S.
,
2016
, “
Mobility Variation of a Family of Metamorphic Parallel Mechanisms with Reconfigurable Hybrid Limbs
,”
Rob. Comput. Integr. Manuf.
,
41
, pp.
145
162
.
26.
Gan
,
D. M.
,
Dai
,
J.
,
Dias
,
J.
, and
Seneviratne
,
L. D.
,
2013
, “
Reconfigurability and Unified Kinematics Modeling of a 3rTPS Metamorphic Parallel Mechanism with Perpendicular Constraint Screws
,”
Rob. Comput. Integr. Manuf.
,
29
(
4
), pp.
121
128
.
27.
Palpacelli
,
M. C.
,
Carbonari
,
L.
,
Palmieri
,
G.
, and
Callegari
,
M.
,
2015
, “
Analysis and Design of a Reconfigurable 3 DoF Parallel Manipulator for Multimodal Tasks
,”
IEEE/ASME Trans. Mechatron.
,
20
(
4
), pp.
1975
1985
.
28.
Gan
,
D. M.
,
Dias
,
J.
, and
Seneviratne
,
L. D.
,
2016
, “
Unified Kinematics and Optimal Design of a 3 rRPS Metamorphic Parallel Mechanism with a Reconfigurable Revolute Joint
,”
Mech. Mach. Theory
,
96
(
part 2
), pp.
239
254
.
29.
Tang
,
T.-F.
, and
Zhang
,
J.
,
2017
, “
Conceptual Design and Comparative Stiffness Analysis of an Exechon-Like Parallel Kinematic Machine with Lockable Spherical Joints
,”
Int. J. Adv. Rob. Syst.
,
14
(
4
), pp.
1
13
.
30.
Huang
,
Z.
,
Li
,
Q.
, and
Ding
,
H.
,
2013
,
Theory of Parallel Mechanisms
,
Springer
,
Dordrecht, The Netherlands
, p.
32
.
31.
Huang
,
Z.
, and
Li
,
Q.
,
2003
, “
Type Synthesis of Symmetrical Lower-Mobility Parallel Mechanisms Using the Constraint-Synthesis Method
,”
Int. J. Rob. Res.
,
22
(
1
), pp.
59
79
.
32.
Gosselin
,
C. M.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.
33.
Gogu
,
G.
,
2008
,
Structural Synthesis of Parallel Robots, Part 1—Methodology
,
Springer
,
Dordrecht, The Netherlands
, pp.
296
297
.
34.
Xi
,
F.
,
Zhang
,
D.
,
Mechefske
,
C. M.
, and
Lang
,
S. Y. T.
,
2004
, “
Global Kinetostatic Modelling of Tripod-Based Parallel Kinematic Machine
,”
Mech. Mach. Theory
,
39
(
4
), pp.
357
377
.
You do not currently have access to this content.