Abstract

A cable-driven redundant manipulator (CDRM) composed of quaternion joints has important applications in confined space, including minimal invasive surgery, aircraft parts assembly, environment exploring, and so on. Benefitting from the unique joint characteristic and cable routing, it can achieve a larger workspace with fewer driving modules than traditional universal joint CDRM. However, the positioning accuracy of the end-effector suffers from the lack of joint feedback information and the delay effect of cable driving mechanisms. In this paper, we propose an equivalent sensing method and design corresponding sensors for each quaternion joint, and develop a high precision controller for the whole manipulator. The motion sensing of the quaternion joint is achieved by establishing the kinematics between its bending pose and middle limb joints. To realize real-time estimation, the fitting technique is adopted. To improve the efficiency of path planning, a geometric iterative inverse kinematics approach for quaternion joint CDRM is proposed based on the isosceles trapezoid simplified model. Furthermore, an accurate controller is designed by combining the feedforward gain and modified PID feedback control. Finally, an 8DOF CDRM prototype with four quaternion joints is developed, and the experiment verifies the effectiveness of the proposed method.

References

1.
Liu
,
S.
,
Yang
,
Z.
,
Zhu
,
Z.
,
Han
,
L.
,
Zhu
,
X.
, and
Xu
,
K.
,
2016
, “
Development of a Dexterous Continuum Manipulator for Exploration and Inspection in Confined Spaces
,”
Ind. Rob.: Int. J.
,
43
(
3
), pp.
284
295
.
2.
Burgner-Kahrs
,
J.
,
Rucker
,
D. C.
, and
Choset
,
H.
,
2015
, “
Continuum Robots for Medical Applications: A Survey
,”
IEEE Trans. Rob.
,
31
(
6
), pp.
1261
1280
.
3.
Kim
,
Y. J.
,
Cheng
,
S.
,
Kim
,
S.
, and
Iagnemma
,
K.
,
2014
, “
A Stiffness-Adjustable Hyperredundant Manipulator Using a Variable Neutral-Line Mechanism for Minimally Invasive Surgery
,”
IEEE Trans. Rob.
,
30
(
2
), pp.
382
395
.
4.
Bogue
,
R.
,
2011
, “
Robots in the Nuclear Industry: A Review of Technologies and Applications
,”
Ind. Rob.: Int. J.
,
38
(
2
), pp.
113
118
.
5.
Buckingham
,
R.
,
Chitrakaran
,
V.
,
Conkie
,
R.
,
Ferguson
,
G.
,
Graham
,
A.
,
Lazell
,
A.
,
Lichon
,
M.
, et al
,
2007
, “
Snake-Arm Robots: A New Approach to Aircraft Assembly
,” SAE Technical Paper 2007-01-3870.
6.
Guardiani
,
P.
,
Ludovico
,
D.
,
Pistone
,
A.
,
Abidi
,
S. H. J.
,
Zaplana
,
I.
,
Lee
,
J.
,
Caldwell
,
D.
, and
Canali
,
C.
,
2021
, “
Design and Analysis of a Fully Actuated Cable-Driven Joint for Hyper-Redundant Robots With Optimal Cable Routing
,”
ASME J. Mech. Rob.
,
14
(
2
), p.
021006
.
7.
Huang
,
L.
,
Liu
,
B.
,
Yin
,
L.
,
Zeng
,
P.
, and
Yang
,
Y.
,
2021
, “
Design and Validation of a Novel Cable-Driven Hyper-Redundant Robot Based on Decoupled Joints
,”
J. Rob.
,
2021
, p.
5124816
.
8.
Fasquelle
,
B.
,
Khanna
,
P.
,
Chevallereau
,
C.
,
Chablat
,
D.
,
Creusot
,
D.
,
Jolivet
,
S.
,
Lemoine
,
P.
, and
Wenger
,
P.
,
2021
, “
Identification and Control of a 3-X Cable-Driven Manipulator Inspired From the Bird's Neck
,”
ASME J. Mech. Rob.
,
14
(
1
), p.
011005
.
9.
Hong
,
W.
,
Xie
,
L.
,
Liu
,
J.
,
Sun
,
Y.
,
Li
,
K.
, and
Wang
,
H.
,
2018
, “
Development of a Novel Continuum Robotic System for Maxillary Sinus Surgery
,”
IEEE/ASME Trans. Mechatron.
,
23
(
3
), pp.
1226
1237
.
10.
Kim
,
Y.
,
Kim
,
J.
, and
Jang
,
W.
,
2018
, “
Quaternion Joint: Dexterous 3-DOF Joint Representing Quaternion Motion for High-Speed Safe Interaction
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
, pp.
935
942
.
11.
Yu
,
J.
,
Dong
,
X.
,
Pei
,
X.
, and
Kong
,
X.
,
2012
, “
Mobility and Singularity Analysis of a Class of Two Degrees of Freedom Rotational Parallel Mechanisms Using a Visual Graphic Approach
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041006
.
12.
Simas
,
H.
, and
Di Gregorio
,
R.
,
2019
, “
A Technique Based on Adaptive Extended Jacobians for Improving the Robustness of the Inverse Numerical Kinematics of Redundant Robots
,”
ASME J. Mech. Rob.
,
11
(
2
), p.
020913
.
13.
Liu
,
T.
,
Yang
,
T.
,
Xu
,
W.
,
Mylonas
,
G.
, and
Liang
,
B.
,
2022
, “
Efficient Inverse Kinematics and Planning of a Hybrid Active and Passive Cable-Driven Segmented Manipulator
,”
IEEE Trans. Syst. Man Cybernet.: Syst.
,
52
(
7
), pp.
4233
4246
.
14.
Ferrentino
,
E.
, and
Chiacchio
,
P.
,
2020
, “
On the Optimal Resolution of Inverse Kinematics for Redundant Manipulators Using a Topological Analysis
,”
ASME J. Mech. Rob.
,
12
(
3
), p.
031002
.
15.
Xu
,
W.
,
Liu
,
T.
, and
Li
,
Y.
,
2018
, “
Kinematics, Dynamics, and Control of a Cable-Driven Hyper-Redundant Manipulator
,”
IEEE/ASME Trans. Mechatron.
,
23
(
4
), pp.
1693
1704
.
16.
Zheng
,
Y.
,
Wu
,
B.
,
Chen
,
Y.
,
Zeng
,
L.
,
Gu
,
G.
,
Zhu
,
X.
, and
Xu
,
K.
,
2021
, “
Design and Validation of Cable-Driven Hyper-Redundant Manipulator With a Closed-Loop Puller-Follower Controller
,”
Mechatronics
,
78
, p.
102605
.
17.
Martín-Barrio
,
A.
,
Barrientos
,
A.
, and
Cerro
,
J.
,
2018
, “
The Natural-CCD Algorithm, A Novel Method to Solve the Inverse Kinematics of Hyper-Redundant and Soft Robots
,”
Soft Rob.
,
5
(
3
), pp.
242
257
.
You do not currently have access to this content.