Abstract

A compliant gripper with nearly parallel gripping motion is developed by a topology synthesis and a dimensional synthesis approach. The topology synthesis process can generate linkage-type compliant mechanisms. Suitable boundary conditions of the topology synthesis process are selected to achieve the desired functions of the device. The dimensional synthesis is based on an evolutionary optimal design process. To meet various design goals, a nondominated multi-objective genetic algorithm is selected for the optimal design process. A kinetostaic model based on the chained beam constraint model is developed for force–displacement analysis of the designs. Efficiency and accuracy of the design approach are proved by experiments. Appropriate linkage types of compliant mechanisms may be discovered by the topology optimization process before moving on to the dimensional synthesis to obtain final designs.

References

1.
Zhao
,
B.
, and
Nelson
,
C. A.
,
2016
, “
Estimating Tool–Tissue Forces Using a 3-Degree-of-Freedom Robotic Surgical Tool
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051015
.
2.
Yi
,
J.
,
Yumbla
,
F.
,
Auh
,
E.
,
Abayebas
,
M.
,
Luong
,
T. A.
, and
Moon
,
H.
,
2021
, “
Passive Aligning of Ribbon Cable in Sliding Surface Gripper for Assembly Task
,”
ASME J. Mech. Rob.
,
13
(
2
), p.
025001
.
3.
Bai
,
G.
,
Kong
,
X.
, and
Ritchie
,
J. M.
,
2017
, “
Kinematic Analysis and Dimensional Synthesis of a Meso-Gripper
,”
ASME J. Mech. Rob.
,
9
(
3
), p.
031017
.
4.
Mantriota
,
G.
,
2007
, “
Optimal Grasp of Vacuum Grippers With Multiple Suction Cups
,”
Mech. Mach. Theory
,
42
(
1
), pp.
18
33
.
5.
Spanu
,
A. R.
,
Besnea
,
D.
,
Avram
,
M.
, and
Ciobanu
,
R.
,
2016
, “
Method for Designing and Controlling Compliant Gripper
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
147
, p.
012046
.
6.
Jin
,
X.
,
Fang
,
Y.
,
Zhang
,
D.
, and
Gong
,
J.
,
2020
, “
Design of Dexterous Hands Based on Parallel Finger Structures
,”
Mech. Mach. Theory
,
152
, p.
103952
.
7.
Wang
,
R.
,
Zhang
,
X.
,
Zhu
,
B.
,
Zhang
,
H.
,
Chen
,
B.
, and
Wang
,
H.
,
2020
, “
Topology Optimization of a Cable-Driven Soft Robotic Gripper
,”
Struct. Multidiscip. Optim.
,
62
(
5
), pp.
2749
2763
.
8.
Keoschkerjan
,
R.
, and
Wurmus
,
H.
,
2002
, “
A Novel Micro Gripper with Parallel Movement of Gripping Arms
,”
Proceedings of the 8th International Conference on New Actuators
,
Bremen, Germany
,
June 10–12
, pp.
321
324
.
9.
Chen
,
W.
,
Zhang
,
X.
,
Li
,
H.
,
Wei
,
J.
, and
Fatikow
,
S.
,
2017
, “
Nonlinear Analysis and Optimal Design of a Novel Piezoelectric-Driven Compliant Microgripper
,”
Mech. Mach. Theory
,
118
, pp.
32
52
.
10.
Nuttall
,
A. J. G.
, and
Klein Breteler
,
A. J.
,
2003
, “
Compliance Effects in a Parallel Jaw Gripper
,”
Mech. Mach. Theory
,
38
(
12
), pp.
1509
1522
.
11.
Goldfarb
,
M.
, and
Celanovic
,
N.
,
1999
, “
A Flexure-Based Gripper for Small-Scale Manipulation
,”
Robotica
,
17
(
2
), pp.
181
187
.
12.
Nah
,
S. K.
, and
Zhong
,
Z. W.
,
2007
, “
A Microgripper Using Piezoelectric Actuation for Micro-Object Manipulation
,”
Sens. Actuators A
,
133
(
1
), pp.
218
224
.
13.
Hoxhold
,
B.
, and
Büttgenbach
,
S.
,
2008
, “
Batch Fabrication of Micro Grippers With Integrated Actuators
,”
Microsyst. Technol.
,
14
(
12
), pp.
1917
1924
.
14.
Mohd Zubir
,
M. N.
,
Shirinzadeh
,
B.
, and
Tian
,
Y.
,
2009
, “
Development of Novel Hybrid Flexure-Based Microgrippers for Precision Micro-Object Manipulation
,”
Rev. Sci. Instrum.
,
80
(
6
), p.
065106
.
15.
Hao
,
G.
, and
Kong
,
X.
,
2012
, “
Conceptual Design and Modelling of a Self-Adaptive Compliant Parallel Gripper for High-Precision Manipulation
,”
Proceedings of the ASME 2012 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE 2012)
,
Chicago, IL
,
August 12–15
, pp.
161
167
.
16.
Xu
,
Q.
,
2012
, “
Mechanism Design and Analysis of a Novel 2-DOF Compliant Modular Microgripper
,”
Proceedings of the 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA)
,
Singapore
,
July 18–20
, pp.
1966
1971
.
17.
Hao
,
G.
, and
Hand
,
R. B.
,
2016
, “
Design and Static Testing of a Compact Distributed-Compliance Gripper Based on Flexure Motion
,”
Arch. Civil Mech. Eng.
,
16
(
4
), pp.
708
716
.
18.
Hao
,
G.
,
Li
,
H.
,
Nayak
,
A.
, and
Caro
,
S.
,
2018
, “
Design of a Compliant Gripper With Multimode Jaws
,”
ASME J. Mech. Rob.
,
10
(
3
), p.
031005
.
19.
Reddy
,
A. N.
,
Maheshwari
,
N.
,
Sahu
,
D. K.
, and
Ananthasuresh
,
G. K.
,
2010
, “
Miniature Compliant Grippers With Vision-Based Force Sensing
,”
IEEE Trans. Rob.
,
26
(
5
), pp.
867
877
.
20.
Xiao
,
S.
,
Li
,
Y.
, and
Zhao
,
X.
,
2011
, “
Optimal Design of a Novel Micro-Gripper With Completely Parallel Movement of Gripping Arms
,”
Proceedings of the 2011 IEEE 5th International Conference on Robotics, Automation and Mechatronics (RAM)
,
Qingdao, China
,
Sept. 17–19
, pp.
35
40
.
21.
Beroz
,
J. D.
,
Awtar
,
S.
,
Bedewy
,
M.
,
Tawfick
,
S. H.
, and
Hart
,
A. J.
,
2011
, “
Compliant Microgripper With Parallel Straight-Line Jaw Trajectory for Nanostructure Manipulation
,”
Proceedings of 26th American Society of Precision Engineering Annual Meeting
,
Denver, CO
,
Nov. 13–18
, pp.
90
93
.
22.
Larsen
,
U. D.
,
Sigmund
,
O.
, and
Bouwstra
,
S.
,
1997
, “
Design and Fabrication of Compliant Micromechanisms and Structures With Negative Poisson's Ratio
,”
J. Microelectromech. Syst.
,
6
(
2
), pp.
99
106
.
23.
Sauter
,
M.
,
Kress
,
G.
,
Giger
,
M.
, and
Ermanni
,
P.
,
2008
, “
Complex-Shaped Beam Element and Graph-Based Optimization of Compliant Mechanisms
,”
Struct. Multidiscip. Optim.
,
36
(
4
), pp.
429
442
.
24.
Liang
,
J.
,
Zhang
,
X.
, and
Zhu
,
B.
,
2019
, “
Nonlinear Topology Optimization of Parallel-Grasping Microgripper
,”
Precis. Eng.
,
60
, pp.
152
159
.
25.
Chen
,
Q.
,
Zhang
,
X.
, and
Zhu
,
B.
,
2018
, “
Design of Buckling-Induced Mechanical Metamaterials for Energy Absorption Using Topology Optimization
,”
Struct. Multidiscip. Optim.
,
58
(
4
), pp.
1395
1410
.
26.
Simo-Serra
,
E.
, and
Perez-Gracia
,
A.
,
2014
, “
Kinematic Synthesis Using Tree Topologies
,”
Mech. Mach. Theory
,
72
, pp.
94
113
.
27.
Liu
,
C.-H.
,
Huang
,
G.-F.
,
Chiu
,
C.-H.
, and
Pai
,
T.-Y.
,
2018
, “
Topology Synthesis and Optimal Design of an Adaptive Compliant Gripper to Maximize Output Displacement
,”
J. Intell. Rob. Syst.
,
90
(
3–4
), pp.
287
304
.
28.
Talischi
,
C.
,
Paulino
,
G. H.
,
Pereira
,
A.
, and
Menezes
,
I. F. M.
,
2012
, “
PolyTop: A Matlab Implementation of a General Topology Optimization Framework Using Unstructured Polygonal Finite Element Meshes
,”
Struct. Multidiscip. Optim.
,
45
(
3
), pp.
329
357
.
29.
Talischi
,
C.
,
Paulino
,
G. H.
,
Pereira
,
A.
, and
Menezes
,
I. F. M.
,
2012
, “
PolyMesher: A General-Purpose Mesh Generator for Polygonal Elements Written in Matlab
,”
Struct. Multidiscip. Optim.
,
45
(
3
), pp.
309
328
.
30.
Pereira
,
A.
,
Menezes
,
I. F. M.
,
Talischi
,
C.
, and
Paulino
,
G. H.
,
2011
, “
An Efficient and Compact MATLAB Implementation of Topology Optimization: Application to Compliant Mechanisms
,”
XXXII Iberian Latin-American Congress on Computational Methods in Engineering
,
Ouro Preto, MG-Brazil
,
Nov. 2011
.
31.
Awtar
,
S.
,
Slocum
,
A. H.
, and
Sevincer
,
E.
,
2007
, “
Characteristics of Beam-Based Flexure Modules
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
625
639
.
32.
Awtar
,
S.
, and
Sen
,
S.
,
2010
, “
A Generalized Constraint Model for Two-Dimensional Beam Flexures: Nonlinear Strain Energy Formulation
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081009
.
33.
Ma
,
F.
, and
Chen
,
G.
,
2016
, “
Modeling Large Planar Deflections of Flexible Beams in Compliant Mechanisms Using Chained Beam-Constraint-Model
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021018
.
34.
Chen
,
G.
, and
Ma
,
F.
,
2015
, “
Kinetostatic Modeling of Fully Compliant Bistable Mechanisms Using Timoshenko Beam Constraint Model
,”
ASME J. Mech. Des.
,
137
(
2
), p.
022301
.
35.
Han
,
Q.
,
Huang
,
X.
, and
Shao
,
X.
,
2017
, “
Nonliear Kinetostatic Modeling of Double-Tensural Fully–Compliant Bistable Mechanisms
,”
Int. J. Non-Linear Mech.
,
93
, pp.
41
46
.
36.
Kong
,
K.
,
Chen
,
G.
, and
Hao
,
G.
,
2019
, “
Kinetostatic Modeling and Optimization of a Novel Horizontal-Displacement Compliant Mechanism
,”
ASME J. Mech. Rob.
,
11
(
6
), p.
064502
.
37.
Han
,
S. M.
,
Kim
,
S. I.
, and
Kim
,
Y. Y.
,
2017
, “
Topology Optimization of Planar Linkage Mechanisms for Path Generation Without Prescribed Timing
,”
Struct. Multidiscip. Optim.
,
56
(
3
), pp.
501
517
.
38.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
39.
Zhu
,
B.
,
Chen
,
Q.
,
Jin
,
M.
, and
Zhang
,
X.
,
2018
, “
Design of Fully Decoupled Compliant Mechanisms With Multiple Degrees of Freedom Using Topology Optimization
,”
Mech. Mach. Theory
,
126
, pp.
413
428
.
40.
Srinivas
,
N.
, and
Deb
,
K.
,
1995
, “
Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms
,”
J. Evol. Comput.
,
2
(
3
), pp.
221
248
.
41.
Zou
,
Q.
,
Zhang
,
D.
,
Luo
,
X.
,
Huang
,
G.
,
Li
,
L.
, and
Zhang
,
H.
,
2020
, “
Enumeration and Optimum Design of a Class of Translational Parallel Mechanisms With Prismatic and Parallelogram Joints
,”
Mech. Mach. Theory
,
150
, p.
103846
.
42.
Sullivan
,
T. A.
, and
Van de Ven
,
J. D.
,
2014
, “
Multi-Objective, Multi-Domain Genetic Optimization of a Hydraulic Rescue Spreader
,”
Mech. Mach. Theory
,
80
, pp.
35
51
.
43.
Jin
,
M.
, and
Zhang
,
X.
,
2016
, “
A new Topology Optimization Method for Planar Compliant Parallel Mechanisms
,”
Mech. Mach. Theory
,
95
, pp.
42
58
.
44.
Milojević
,
A.
,
Linß
,
S.
,
Ćojbašić
,
Ž
, and
Handroos
,
H.
,
2021
, “
A Novel Simple, Adaptive, and Versatile Soft-Robotic Compliant Two-Finger Gripper With an Inherently Gentle Touch
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011015
.
45.
Lu
,
K.-J.
, and
Kota
,
S.
,
2006
, “
Topology and Dimensional Synthesis of Compliant Mechanisms Using Discrete Optimization
,”
ASME J. Mech. Des.
,
128
(
5
), pp.
1080
1091
.
46.
Milojević
,
A.
, and
Pavlović
,
N.
,
2015
, “
Development of a New Adaptive Shape Morphing Compliant Structure With Embedded Actuators
,”
J. Intell. Mater. Syst. Struct.
,
27
(
10
), pp.
1306
1328
.
47.
Saxena
,
A.
,
2013
, “
A Contact-Aided Compliant Displacement-Delimited Gripper Manipulator
,”
ASME J. Mech. Rob.
,
5
(
4
), p.
041005
.
You do not currently have access to this content.