Abstract

Drawing inspiration from kirigami, this article first presents the crease pattern of a kirigami model which is kinematically equivalent to a Bennett plano-spherical linkage. In terms of the screw theory, distinct closed-loop motion branches of the linkage are revealed. This article then introduces a new reconfigurable parallel manipulator with three hybrid kinematic limbs. Each limb consists of closed-loop subchain, the Bennett plano-spherical linkage, and a R(RR) serial chain. Constraints provided by the hybrid limb are explored by analyzing constraint screws of serial limbs kinematically equivalent to the hybrid limb in different motion branches. The analysis reveals motion characteristics of the moving platform when the parallel manipulator is in different motion branches. The kinematic model provides a unified mapping between joint inputs and outputs of the reconfigurable manipulator in all three motion branches. This article further presents a new inflatable angular pouch motor and fabricated a prototype using a rectangular tile origami base and adhesive fabric. The pouch motors are then integrated with 3D printed prototypes of the Bennett plano-spherical linkage and the parallel manipulator for the purpose of reconfiguring motion branches.

References

1.
Merlet
,
J.-P.
,
2000
, “Parallel Robots: Open Problems,”
Robotics Research
,
J. M.
Hollerbach
, and
D. E.
Koditschek
, eds.,
Springer
,
London
, pp.
27
32
.
2.
Huang
,
T.
,
Bai
,
P.
,
Mei
,
J.
, and
Chetwynd
,
D. G.
,
2016
, “
Tolerance Design and Kinematic Calibration of a Four-Degrees-of-Freedom Pick-and-Place Parallel Robot
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061018
.
3.
Corbel
,
D.
,
Gouttefarde
,
M.
, and
Pierrot
,
F.
,
2010
, “
Actuation Redundancy as a Way to Improve the Acceleration Capabilities of 3t and 3t1r Pick-and-Place Parallel Manipulators
,”
ASME J. Mech. Rob.
,
2
(
4
), p.
041002
.
4.
Martin-Parra
,
A.
,
Rodriguez-Rosa
,
D.
,
Juarez-Perez
,
S.
,
Rubio-Gomez
,
G.
,
Gonzalez-Rodriguez
,
A.
, and
Castillo-Garcia
,
F. J.
,
2021
, “
Gateway Configuration for Rapid Pick-and-Place Operations of 2-Degrees-of-Freedom Parallel Robots
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
014504
.
5.
Wang
,
L.
,
Wu
,
J.
,
Wang
,
J.
, and
You
,
Z.
,
2009
, “
An Experimental Study of a Redundantly Actuated Parallel Manipulator for a 5-dof Hybrid Machine Tool
,”
IEEE/ASME Trans. Mechatron.
,
14
(
1
), pp.
72
81
.
6.
Jin
,
Y.
,
Chanal
,
H.
, and
Paccot
,
F.
,
2015
,
Parallel Robots
,
Springer
,
London
, pp.
2091
2127
.
7.
Ma
,
N.
,
Yu
,
J.
,
Dong
,
X.
, and
Axinte
,
D.
,
2018
, “
Design and Stiffness Analysis of a Class of 2-dof Tendon Driven Parallel Kinematics Mechanism
,”
Mech. Mach. Theory.
,
129
, pp.
202
217
.
8.
Dong
,
X.
,
Palmer
,
D.
,
Axinte
,
D.
, and
Kell
,
J.
,
2019
, “
In-situ Repair/Maintenance With a Continuum Robotic Machine Tool in Confined Space
,”
J. Manufact. Process.
,
38
, pp.
313
318
.
9.
Gan
,
D.
,
Dai
,
J. S.
,
Dias
,
J.
, and
Seneviratne
,
L. D.
,
2016
, “
Variable Motion/Force Transmissibility of a Metamorphic Parallel Mechanism With Reconfigurable 3T and 3R Motion
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051001
.
10.
Kang
,
X.
, and
Dai
,
J. S.
,
2019
, “
Relevance and Transferability for Parallel Mechanisms With Reconfigurable Platforms
,”
ASME J. Mech. Rob.
,
11
(
3
), pp.
031012
.
11.
Kong
,
X.
, and
Gosselin
,
C. m. M.
,
2004
, “
Type Synthesis of 3-dof Spherical Parallel Manipulators Based on Screw Theory
,”
ASME J. Mech. Des.
,
126
(
1
), pp.
101
108
.
12.
Daniel Finistauri
,
A.
, and
Xi
,
F.
,
2013
, “
Reconfiguration Analysis of a Fully Reconfigurable Parallel Robot
,”
ASME J. Mech. Rob.
,
5
(
4
), p.
041002
.
13.
Essomba
,
T.
,
Hsu
,
Y.
,
Sandoval Arevalo
,
J. S.
,
Laribi
,
M. A.
, and
Zeghloul
,
S.
,
2019
, “
Kinematic Optimization of a Reconfigurable Spherical Parallel Mechanism for Robotic-Assisted Craniotomy
,”
ASME J. Mech. Rob.
,
11
(
6
), p.
060905
.
14.
Yang
,
H.
,
Fang
,
H.
,
Li
,
X.
, and
Fang
,
Y.
,
2020
, “
Workspace Augmentation for the Large-Scale Spherical Honeycombs Perfusion Using a Novel 5dof Reconfigurable Manipulator
,”
ASME J. Mech. Rob.
,
12
(
6
), p.
064501
.
15.
Zlatanov
,
D.
,
Bonev
,
I. A.
, and
Gosselin
,
C. M.
,
2002
, “Constraint Singularities as C-Space Singularities,”
Advances in Robot Kinematics
,
J.
Lenarčič
, and
F.
Thomas
, eds.,
Springer
,
Dordrecht
, pp.
183
192
.
16.
Zlatanov
,
D.
,
Bonev
,
I. A.
, and
Gosselin
,
C. M.
,
2002
, “
Constraint Singularities of Parallel Mechanisms
,”
Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292)
,
Washington, DC
,
IEEE
.
17.
Kong
,
X.
,
Gosselin
,
C. M.
, and
Richard
,
P.-L.
,
2006
, “
Type Synthesis of Parallel Mechanisms With Multiple Operation Modes
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
595
601
.
18.
Kong
,
X.
, and
Yu
,
J.
,
2015
, “
Type Synthesis of Two-Degrees-of-Freedom 3-4r Parallel Mechanisms With Both Spherical Translation Mode and Sphere-on-Sphere Rolling Mode
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041018
.
19.
Gogu
,
G.
,
2009
, “Branching Singularities in Kinematotropic Parallel Mechanisms,”
Computational Kinematics
,
A.
Kecskeméthy
, and
A.
Müller
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
341
348
.
20.
Li
,
Q.
, and
Hervé
,
J. M.
,
2009
, “
Parallel Mechanisms With Bifurcation of Schoenflies Motion
,”
IEEE Trans. Robot.
,
25
(
1
), pp.
158
164
.
21.
Gan
,
D.
,
Dai
,
J. S.
, and
Liao
,
Q.
,
2010
, “
Constraint Analysis on Mobility Change of a Novel Metamorphic Parallel Mechanism
,”
Mech. Mach. Theory.
,
45
(
12
), pp.
1864
1876
.
22.
Zhang
,
K.
,
Dai
,
J. S.
, and
Fang
,
Y.
,
2013
, “
Geometric Constraint and Mobility Variation of Two 3svpsv Metamorphic Parallel Mechanisms
,”
ASME J. Mech. Des.
,
135
(
1
), p.
011002
.
23.
Carbonari
,
L.
,
Callegari
,
M.
,
Palmieri
,
G.
, and
Palpacelli
,
M.-C.
,
2014
, “
A New Class of Reconfigurable Parallel Kinematic Machines
,”
Mech. Mach. Theory.
,
79
, pp.
173
183
.
24.
Palpacelli
,
M.-C.
,
Carbonari
,
L.
,
Palmieri
,
G.
, and
Callegari
,
M.
,
2014
, “
Analysis and Design of a Reconfigurable 3-dof Parallel Manipulator for Multimodal Tasks
,”
IEEE/ASME Trans Mechatron.
,
20
(
4
), pp.
1975
1985
.
25.
Zhang
,
K.
,
Dai
,
J. S.
, and
Fang
,
Y.
,
2010
, “
Topology and Constraint Analysis of Phase Change in the Metamorphic Chain and Its Evolved Mechanism
,”
ASME J. Mech. Des.
,
132
(
12
), p.
121001
.
26.
Zeng
,
Q.
,
Fang
,
Y.
, and
Ehmann
,
K. F.
,
2011
, “
Design of a Novel 4-dof Kinematotropic Hybrid Parallel Manipulator
,”
ASME J. Mech. Des.
,
133
(
12
), p.
121006
.
27.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
,
2006
, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
220
229
.
28.
Zhao
,
J.-S.
,
Feng
,
Z.-J.
,
Zhou
,
K.
, and
Dong
,
J.-X.
,
2005
, “
Analysis of the Singularity of Spatial Parallel Manipulator With Terminal Constraints
,”
Mech. Mach. Theory.
,
40
(
3
), pp.
275
284
.
29.
Zhang
,
K.
,
Fang
,
Y.
,
Fang
,
H.
, and
Dai
,
J. S.
,
2010
, “
Geometry and Constraint Analysis of the Three-Spherical Kinematic Chain Based Parallel Mechanism
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
031014
.
30.
Chen
,
Y.
,
2003
,
Design of Structural Mechanisms
,
Oxford University
,
Oxford, UK
.
31.
Huang
,
Z.
, and
Li
,
Q.
,
2002
, “
General Methodology for Type Synthesis of Symmetrical Lower-Mobility Parallel Manipulators and Several Novel Manipulators
,”
Int. J. Robot. Res.
,
21
(
2
), pp.
131
145
.
32.
Hernandez
,
A.
,
Ibarreche
,
J. I.
,
Petuya
,
V.
, and
Altuzarra
,
O.
,
2014
, “
Structural Synthesis of 3-dof Spatial Fully Parallel Manipulators
,”
Int. J. Adv. Robot. Syst.
,
11
(
7
), p.
101
.
33.
Fang
,
Y.
, and
Tsai
,
L.-W.
,
2002
, “
Structure Synthesis of a Class of 4-dof and 5-dof Parallel Manipulators With Identical Limb Structures
,”
Int. J. Robot. Res.
,
21
(
9
), pp.
799
810
.
34.
Wang
,
C.
,
Fang
,
Y.
, and
Guo
,
S.
,
2016
, “
Design and Analysis of 3R2T and 3R3T Parallel Mechanisms With High Rotational Capability
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
011004
.
35.
Hu
,
B.
,
2019
, “
Terminal Position and Orientation Coupling in Lower Mobility Robots
,”
ASME J. Mech. Rob.
,
11
(
3
), p.
031008
.
36.
Zhang
,
K.
, and
Dai
,
J. S.
,
2015
, “
Screw-System-Variation Enabled Reconfiguration of the Bennett Plano-Spherical Hybrid Linkage and Its Evolved Parallel Mechanism
,”
ASME J. Mech. Des.
,
137
(
6
), p.
062303
.
37.
Mosadegh
,
B.
,
Polygerinos
,
P.
,
Keplinger
,
C.
,
Wennstedt
,
S.
,
Shepherd
,
R. F.
,
Gupta
,
U.
,
Shim
,
J.
,
Bertoldi
,
K.
,
Walsh
,
C. J.
, and
Whitesides
,
G. M.
,
2014
, “
Pneumatic Networks for Soft Robotics That Actuate Rapidly
,”
Adv. Funct. Mater.
,
24
(
15
), pp.
2163
2170
.
38.
Ou
,
J.
,
Skouras
,
M.
,
Vlavianos
,
N.
,
Heibeck
,
F.
,
Cheng
,
C.-Y.
,
Peters
,
J.
, and
Ishii
,
H.
,
2016
, “
Aeromorph-Heat-Sealing Inflatable Shape-Change Materials for Interaction Design
,”
Proceedings of the 29th Annual Symposium on User Interface Software and Technology
,
Tokyo, Japan
,
Oct. 16–19
, pp.
121
132
.
39.
Dureisseix
,
D.
,
2012
, “
An Overview of Mechanisms and Patterns With Origami
,”
Int. J. Space Struct.
,
27
(
1
), pp.
1
14
.
40.
Miura
,
K.
,
1989
, “
A Note on Intrinsic Geometry of Origami
,”
First International Meeting of Origami Science and Technology
,
Ferrara, Italy
,
Dec. 6–7
, pp.
91
102
.
41.
Niiyama
,
R.
,
Sun
,
X.
,
Sung
,
C.
,
An
,
B.
,
Rus
,
D.
, and
Kim
,
S.
,
2015
, “
Pouch Motors: Printable Soft Actuators Integrated With Computational Design
,”
Soft Robot.
,
2
(
2
), pp.
59
70
.
42.
Butler
,
J.
,
Bowen
,
L.
,
Wilcox
,
E.
,
Shrager
,
A.
,
Frecker
,
M. I.
,
von Lockette
,
P.
,
Simpson
,
T. W.
,
Lang
,
R. J.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2018
, “
A Model for Multi-Input Mechanical Advantage in Origami-Based Mechanisms
,”
ASME J. Mech. Rob.
,
10
(
6
), p.
061007
.
43.
Acer Kalafat
,
M.
,
Sevinc
,
H.
,
Samankan
,
S.
,
Altinkaynak
,
A.
, and
Temel
,
Z.
,
2021
, “
A Novel Origami Inspired Delta Mechanism With Flat Parallelogram Joints
,”
ASME J. Mech. Rob.
,
13
(
2
), p.
021005
.
You do not currently have access to this content.