Abstract

This paper presents a novel robotic system to characterize and retrain reaching in rats. This robot is intended to be a research platform for the rehabilitation of forelimb movements in rats. In this paper, we focus on the design of this robotic system. We present the design requirements, mathematical models, and details of the physical device. A parallel mechanism with a special alignment of the component chains is used to accommodate observed reaching motions of a rat’s forelimb. Additionally, we demonstrate the use of this robot to record forelimb trajectories. Three healthy rats were used to record repeated reaching motions while the robot applied nearly zero force. We believe that this robotic system can be used in future training studies with rats who have impaired arm motions due to a neurological insult.

References

1.
Nef
,
T.
, and
Riener
,
R.
,
2005
, “
Armin-Design of a Novel Arm Rehabilitation Robot
,”
9th International Conference on Rehabilitation Robotics, 2005, ICORR 2005
,
Chicago, IL
,
June 28–July 1
,
IEEE
,
Silver Spring, MD
, pp.
57
60
.
2.
Díaz
,
I.
,
Gil
,
J. J.
, and
Sánchez
,
E.
,
2011
, “
Lower-Limb Robotic Rehabilitation: Literature Review and Challenges
,”
J. Rob.
,
2011
, p.
759764
.
3.
Santamaria
,
V.
,
Luna
,
T.
,
Khan
,
M.
, and
Agrawal
,
S.
,
2020
, “
The Robotic Trunk-Support-Trainer (trust) to Measure and Increase Postural Workspace During Sitting in People with Spinal Cord Injury
,”
Spinal Cord Series Cases
,
6
(
1
), pp.
1
7
.
4.
Zhang
,
H.
,
Chang
,
B.-C.
, and
Agrawal
,
S. K.
,
2019
, “
Using a Robotic Neck Brace for Movement Training of the Head–neck
,”
IEEE Rob. Auto. Lett.
,
4
(
2
), pp.
846
853
.
5.
de Leon
,
R. D.
,
Kubasak
,
M. D.
,
Phelps
,
P. E.
,
Timoszyk
,
W. K.
,
Reinkensmeyer
,
D. J.
,
Roy
,
R. R.
, and
Edgerton
,
V. R.
,
2002
, “
Using Robotics to Teach the Spinal Cord to Walk
,”
Brain. Res. Rev.
,
40
(
1–3
), pp.
267
273
.
6.
de Leon
,
R. D.
, and
Dy
,
C. J.
,
2017
, “
What Did We Learn From the Animal Studies of Body Weight–supported Treadmill Training and Where Do We Go From Here?
,”
J. Neur.
,
34
(
9
), pp.
1744
1750
.
7.
Hamlin
,
M.
,
Traughber Jr
,
T.
,
Reinkensmeyer
,
D. J.
, and
de Leon
,
R. D.
,
2015
, “
A Novel Device for Studying Weight Supported, Quadrupedal Overground Locomotion in Spinal Cord Injured Rats
,”
J. Neurosci. Methods.
,
246
, pp.
134
141
.
8.
Song
,
Y. S.
, and
Hogan
,
N.
,
2015
, “
A Novel Interactive Exoskeletal Robot for Overground Locomotion Studies in Rats
,”
IEEE Trans. Neural Syst. Rehab. Eng.
,
23
(
4
), pp.
591
599
.
9.
Torres-Espín
,
A.
,
Beaudry
,
E.
,
Fenrich
,
K.
, and
Fouad
,
K.
,
2018
, “
Rehabilitative Training in Animal Models of Spinal Cord Injury
,”
J. Neur.
,
35
(
16
), pp.
1970
1985
.
10.
Metz
,
G. A.
, and
Whishaw
,
I. Q.
,
2000
, “
Skilled Reaching An Action Pattern: Stability in Rat (Rattus norvegicus) Grasping Movements as a Function of Changing Food Pellet Size
,”
Behav. Brain Res.
,
116
(
2
), pp.
111
122
.
11.
Torres-Espin
,
A.
,
Forero
,
J.
,
Schmidt
,
E. K.
,
Fouad
,
K.
, and
Fenrich
,
K. K.
,
2018
, “
A Motorized Pellet Dispenser to Deliver High Intensity Training of the Single Pellet Reaching and Grasping Task in Rats
,”
Behav. Brain Res.
,
336
, pp.
67
76
.
12.
Leemburg
,
S.
,
Iijima
,
M.
,
Lambercy
,
O.
,
Nallet-Khosrofian
,
L.
,
Gassert
,
R.
, and
Luft
,
A.
,
2017
, “
Investigating Motor Skill Learning Processes With a Robotic Manipulandum
,”
JoVE (J. Visual. Exp.)
(
120
), p.
e54970
. http://dx.doi.org/10.3791/5497
13.
Sharp
,
K. G.
,
Duarte
,
J. E.
,
Gebrekristos
,
B.
,
Perez
,
S.
,
Steward
,
O.
, and
Reinkensmeyer
,
D. J.
,
2016
, “
Robotic Rehabilitator of the Rodent Upper Extremity: A System and Method for Assessing and Training Forelimb Force Production After Neurological Injury
,”
J. Neur.
,
33
(
5
), pp.
460
467
.
14.
Hays
,
S. A.
,
Khodaparast
,
N.
,
Sloan
,
A. M.
,
Hulsey
,
D. R.
,
Pantoja
,
M.
,
Ruiz
,
A. D.
,
Kilgard
,
M. P.
, and
Rennaker II
,
R. L.
,
2013
, “
The Isometric Pull Task: A Novel Automated Method for Quantifying Forelimb Force Generation in Rats
,”
J. Neurosci. Methods.
,
212
(
2
), pp.
329
337
.
15.
Sindhurakar
,
A.
,
Butensky
,
S. D.
,
Meyers
,
E.
,
Santos
,
J.
,
Bethea
,
T.
,
Khalili
,
A.
,
Sloan
,
A. P.
,
Rennaker III
,
R. L.
, and
Carmel
,
J. B.
,
2017
, “
An Automated Test of Rat Forelimb Supination Quantifies Motor Function Loss and Recovery After Corticospinal Injury
,”
Neur. Neural Repair
,
31
(
2
), pp.
122
132
.
16.
Spalletti
,
C.
,
Lai
,
S.
,
Mainardi
,
M.
,
Panarese
,
A.
,
Ghionzoli
,
A.
,
Alia
,
C.
,
Gianfranceschi
,
L.
,
Chisari
,
C.
,
Micera
,
S.
, and
Caleo
,
M.
,
2014
, “
A Robotic System for Quantitative Assessment and Poststroke Training of Forelimb Retraction in Mice
,”
Neurorehab. Neural Repair
,
28
(
2
), pp.
188
196
.
17.
Li
,
J.
,
Wang
,
J.
,
Chou
,
W.
,
Zhang
,
Y.
,
Wang
,
T.
, and
Zhang
,
Q.
,
2001
, “
Inverse Kinematics and Dynamics of the 3-rrs Parallel Platform
,”
Proceedings 2001 ICRA, IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164)
,
Seoul, South Korea
,
May 21–26
, Vol.
3
,
IEEE
,
Silver Spring, MD
, pp.
2506
2511
.
18.
Chinello
,
F.
,
Pacchierotti
,
C.
,
Malvezzi
,
M.
, and
Prattichizzo
,
D.
,
2017
, “
A Three Revolute-revolute-Spherical Wearable Fingertip Cutaneous Device for Stiffness Rendering
,”
IEEE Trans. Haptics
,
11
(
1
), pp.
39
50
.
19.
Tetik
,
H.
,
Kalla
,
R.
,
Kiper
,
G.
, and
Bandyopadhyay
,
S.
,
2016
, “
Position Kinematics of a 3-rrs Parallel Manipulator
,” Symposium on Robot Design, Dynamics and Control,
Springer
,
Berlin
, pp.
65
72
.
20.
Nag
,
A.
,
Mohan
,
S.
, and
Bandyopadhyay
,
S.
,
2017
, “
Forward Kinematic Analysis of the 3-rprs Parallel Manipulator
,”
Mech. Mach. Theory.
,
116
, pp.
262
272
.
You do not currently have access to this content.