Abstract

This article presents a new assembling for 2 degrees-of-freedom (DOFs) parallel robots for executing rapid pick-and-place operations with low energy consumption. A conventional design of 2-DOF parallel robots is based on five-bar mechanisms. Collisions between links are highly possible, restricting the end-effector workspace and/or increasing the trajectory time to avoid collisions. In this article, an alternative assembling for preventing collisions is presented. This novel assembling allows exploring the difference between the four five-bar mechanism configurations for the same position of the end-effector. Some of these configurations yield to lower time and/or lower energy consumption for the same motorization. First, a dynamic model of the robot has been developed using matlab® and simulink® and validated by comparison with the results obtained by adams® software. A robust cascade PD regulator for controlling joint coordinates has been tuned providing a high accurate end-effector positioning. Finally, simulation results of four configurations are presented for executing controlled maneuvers. The obtained results demonstrate that the conventional configuration is the worst one in terms of trajectory time or energy consumption and, conversely, the best one corresponds to an uncommonly used configuration. A workspace map where all configurations provide faster maneuvers has been obtained in terms of Jacobian matrix and mechanism elbows distance. The results presented here allow designing a rapid manipulator for pick-and-place operations.

References

1.
Colestock
,
H.
,
2005
,
Industrial Robotics: Selection, Design, and Maintenance
, Vol.
25
,
TAB Robotics
.
2.
Ceres
,
R.
,
Pons
,
J.
,
Jimenez
,
A.
,
Martin
,
J.
, and
Calderon
,
L.
,
1998
, “
Design and Implementation of an Aided Fruit-Harvesting Robot (Agribot)
,”
Industr. Robot Inter. J.
,
25
(
5
), pp.
337
346
. 10.1108/01439919810232440
3.
Shang
,
J.
,
Sattar
,
T.
,
Chen
,
S.
, and
Bridge
,
B.
,
2007
, “
Design of a Climbing Robot for Inspecting Aircraft Wings and Fuselage
,”
Industr. Robot Inter. J.
,
34
(
6
), pp.
495
502
. 10.1108/01439910710832093
4.
Singh
,
P.
,
Kumar
,
A.
, and
Vashisth
,
M.
,
2013
, “
Design of a Robotic Arm With Gripper & End Effector for Spot Welding
,”
Univ. J. Mech. Engin.
,
1
(
3
), pp.
92
97
. 10.13189/ujme.2013.010303
5.
Nof
,
S. Y.
,
1999
,
Handbook of Industrial Robotics
,
John Wiley & Sons
,
New York
.
6.
Pandilov
,
Z.
, and
Dukovski
,
V.
,
2014
, “
Comparison of the Characteristics Between Serial and Parallel Robots
,”
Acta Tech. Corvininesis Bull. Engin.
,
7
(
1
), pp.
157
.
7.
Merlet
,
J.-P.
,
2006
,
Parallel Robots
, Vol.
128
,
Springer Science & Business Media
,
New York
.
8.
Hodgins
,
J.
,
2018
, “
H-delta: Design and Applications of a Novel 5 deg of Freedom Parallel Robot
,” Ph.D. dissertation,
University of Ontario Institute of Technology
,
Oshawa, Canada
.
9.
Pierrot
,
F.
,
Reynaud
,
C.
, and
Fournier
,
A.
,
1990
, “
Delta: A Simple and Efficient Parallel Robot
,”
Robotica
,
8
(
2
), pp.
105
109
. 10.1017/S0263574700007669
10.
Clavel
,
R.
,
1989
, “
Une Nouvelle Structure De Manipulateur Pour La Robotique Légère
,”
APII
,
23
(
6
), pp.
501
519
.
11.
Di Gregorio
,
R.
,
2004
, “
Kinematics of the Translational 3-urc Mechanism
,”
Trans. ASME-R-J. Mech. Design
,
126
(
6
), p.
1113
. 10.1115/1.1814390
12.
Liu
,
X.
,
Wang
,
J.
, and
Zheng
,
H.
,
2003
, “
Workspace Atlases for the Computer Aided Design of the Delta Robot
,”
Proc. Inst. Mech. Engin. Part C: J. Mech. Engin. Sci.
,
217
(
8
), pp.
861
869
. 10.1243/095440603322310413
13.
Liu
,
X.-J.
,
Wang
,
J.
,
Oh
,
K.-K.
, and
Kim
,
J.
,
2004
, “
A New Approach to the Design of a Delta Robot With a Desired Workspace
,”
J. Intel. Robot. Syst.
,
39
(
2
), pp.
209
225
. 10.1023/B:JINT.0000015403.67717.68
14.
Brinker
,
J.
, and
Corves
,
B.
,
2015
, “
A Survey on Parallel Robots With Delta-Like Architecture
,”
Proceedings of the 14th IFToMM World Congress
,
Taipei, Taiwan
,
Oct. 25–30
, pp.
407
414
.
15.
Merlet
,
J.-P.
,
1989
, “
Singular Configurations of Parallel Manipulators and Grassmann Geometry
,”
Inter. J. Robot. Res.
,
8
(
5
), pp.
45
56
. 10.1177/027836498900800504
16.
Merlet
,
J.-P.
,
Gosselin
,
C. M.
, and
Mouly
,
N.
,
1998
, “
Workspaces of Planar Parallel Manipulators
,”
Mech. Mach. Theory.
,
33
(
1–2
), pp.
7
20
. 10.1016/S0094-114X(97)00025-6
17.
Merlet
,
J.-P.
,
2006
, “
Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robots
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
199
206
. 10.1115/1.2121740
18.
Merlet
,
J.-P.
,
2012
,
Parallel Robots
, Vol.
74
,
Springer Science & Business Media
,
New York
.
19.
Makino
,
H.
,
1982
, “
Scara Robot and Its Family
,”
Proceedings of 3rd International Conference on Assembly Automation
,
Boebligen, Nr. Stuttgart, W. Germany
,
May 25–27
, pp.
433
444
.
20.
Bourbonnais
,
F.
,
Bigras
,
P.
, and
Bonev
,
I. A.
,
2015
, “
Minimum-Time Trajectory Planning and Control of a Pick-and-Place Five-Bar Parallel Robot
,”
IEEE/ASME Trans. Mechatron.
,
20
(
2
), pp.
740
749
. 10.1109/TMECH.2014.2318999
21.
Aguas
,
X.
,
Cuaycal
,
A.
,
Paredes
,
I.
, and
Herrera
,
M.
,
2018
, “
A Fuzzy Sliding Mode for Planar 4-Cable Direct Driven Robot
,”
Enfoque UTE
,
9
(
4
), pp.
99
109
. 10.29019/enfoqueute.v9n4.403
22.
Zheng
,
Y.-Q.
,
2006
, “
Feedback Linearization Control of a Wire-Driven Parallel Support System in Wind Tunnels
,”
Sixth International Conference on Intelligent Systems Design and Applications
,
Jinan, China
,
Oct. 16–18
, Vol.
3
, IEEE, pp.
9
13
.
23.
Zarebidoki
,
M.
,
Lotfavar
,
A.
, and
Fahham
,
H.
,
2011
, “
Effectiveness of Adaptive Passivity-Based Trajectory Tracking Control of a Cable-Suspended Robot
,”
International Conference on Trends in Mechanical and Industrial Engineering
,
Bangkok, Thailand
,
Dec. 23–24
, pp.
180
184
.
24.
Babaghasabha
,
R.
,
Khosravi
,
M. A.
, and
Taghirad
,
H. D.
,
2015
, “Adaptive Control of Kntu Planar Cable-Driven Parallel Robot With Uncertainties in Dynamic and Kinematic Parameters,”
Cable-Driven Parallel Robots
,
Springer
,
New York
, pp.
145
159
.
25.
Arsenault
,
M.
, and
Boudreau
,
R.
,
2004
, “
The Synthesis of Three-Degree-of-Freedom Planar Parallel Mechanisms With Revolute Joints (3-r Rr) for an Optimal Singularity-Free Workspace
,”
J. Robot. Syst.
,
21
(
5
), pp.
259
274
. 10.1002/rob.20013
26.
Sen
,
S.
,
Dasgupta
,
B.
, and
Mallik
,
A. K.
,
2003
, “
Variational Approach for Singularity-Free Path-Planning of Parallel Manipulators
,”
Mech. Mach. Theory.
,
38
(
11
), pp.
1165
1183
. 10.1016/S0094-114X(03)00065-X
27.
Dash
,
A. K.
,
Chen
,
I.-M.
,
Yeo
,
S. H.
, and
Yang
,
G.
,
2005
, “
Workspace Generation and Planning Singularity-Free Path for Parallel Manipulators
,”
Mech. Mach. Theory.
,
40
(
7
), pp.
776
805
. 10.1016/j.mechmachtheory.2005.01.001
28.
Campos
,
L.
,
Bourbonnais
,
F.
,
Bonev
,
I. A.
, and
Bigras
,
P.
,
2010
, “
Development of a Five-Bar Parallel Robot With Large Workspace
,”
ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal, Quebec, Canada
,
Aug. 15 –18
, pp.
917
922
.
29.
Krut
,
S.
,
Nabat
,
V.
,
Company
,
O.
, and
Pierrot
,
F.
,
2004
, “
A High-Speed Parallel Robot for Scara Motions
,”
IEEE International Conference of Robotics and Automation
,
New Orleans, LA
,
Apr. 26–May 1
, Vol.
4
, IEEE, pp.
4109
4115
.
30.
Erdman
,
A. G.
,
Sandor
,
G. N.
, and
Kota
,
S.
,
1997
,
Mechanism Design: Analysis and Synthesis
, Vol.
1
,
Prentice-Hall
,
Upper Saddle River, NJ
.
31.
De Jalón
,
J. G.
, and
Bayo
,
E.
,
2012
,
Kinematic and Dynamic Simulation of Multibody Systems: the Real-Time Challenge
,
Springer Science & Business Media
,
New York
.
32.
Alba
,
M.
,
Prada
,
J. C. G.
,
Meneses
,
J.
, and
Rubio
,
H.
,
2010
, “
Center of Percussion and Gait Design of Biped Robots
,”
Mech. Mach. Theory.
,
45
(
11
), pp.
1681
1693
. 10.1016/j.mechmachtheory.2010.06.008
33.
Sun
,
W.
, and
Yuan
,
Y.-X.
,
2006
,
Optimization Theory and Methods: Nonlinear Programming
, Vol.
1
,
Springer Science & Business Media
,
New York
.
34.
Nocedal
,
J.
, and
Wright
,
S.
,
2006
,
Numerical Optimization
,
Springer Science & Business Media
,
New York
.
35.
Hei
,
L.
,
2007
, “
Practical Techniques for Nonlinear Optimization
,” Ph.D. dissertation,
NorthWestern University
,
Evanston, IL
.
36.
Dormand
,
J. R.
, and
Prince
,
P. J.
,
1980
, “
A Family of Embedded Runge-Kutta Formulae
,”
J. Comput Applied Math
,
6
(
1
), pp.
19
26
. 10.1016/0771-050X(80)90013-3
37.
Liang
,
D.
,
Song
,
Y.
,
Sun
,
T.
, and
Dong
,
G.
,
2016
, “
Optimum Design of a Novel Redundantly Actuated Parallel Manipulator With Multiple Actuation Modes for High Kinematic and Dynamic Performance
,”
Nonlinear Dyn.
,
83
(
1–2
), pp.
631
658
. 10.1007/s11071-015-2353-1
38.
Sun
,
T.
,
Liang
,
D.
, and
Song
,
Y.
,
2017
, “
Singular-Perturbation-Based Nonlinear Hybrid Control of Redundant Parallel Robot
,”
IEEE Trans. Industr. Electron.
,
65
(
4
), pp.
3326
3336
. 10.1109/TIE.2017.2756587
39.
Ogata
,
K.
, and
Yang
,
Y.
,
2002
,
Modern Control Engineering
, Vol.
4
,
Prentice-Hall
,
Upper Saddle River, NJ
.
40.
Feliu
,
V.
,
Castillo
,
F. J.
,
Ramos
,
F.
, and
Somolinos
,
J. A.
,
2012
, “
Robust Tip Trajectory Tracking of a Very Lightweight Single-Link Flexible Arm in Presence of Large Payload Changes
,”
Mechatronics
,
22
(
5
), pp.
594
613
. 10.1016/j.mechatronics.2012.01.012
41.
Gonzalez-Rodriguez
,
A.
,
Castillo-Garcia
,
F.
,
Ottaviano
,
E.
,
Rea
,
P.
, and
Gonzalez-Rodriguez
,
A.
,
2017
, “
On the Effects of the Design of Cable-Driven Robots on Kinematics and Dynamics Models Accuracy
,”
Mechatronics
,
43
(
1
), pp.
18
27
. 10.1016/j.mechatronics.2017.02.002
You do not currently have access to this content.