Abstract

In this article, the inverted honeycomb cell, known to exhibit an auxetic behavior, is considered to design two pneumatic linear actuators. The actuators are built using a combination of soft and rigid structures. They present complementary performances in terms of displacement, force, and stiffness. Experimental evaluations are conducted using prototypes produced using multimaterial additive manufacturing to combine soft and rigid materials with freedom of shape. The first actuator is inspired by origami structures. The possibility to obtain large deformations under low pressure is observed. The second actuator is based on a cylindrical auxetic structure based on the inverted honeycomb cell. Smaller deformation is reached but the design favors the off-axis stiffness, so the component can be integrated without any additional mechanical joint for translation. A discussion on the relative performances of these two actuators and their possible uses conclude the paper.

References

1.
Best
,
C. M.
,
Wilson
,
J. P.
, and
Killpack
,
M. D.
,
2015
, “
Control of A Pneumatically Actuated, Fully Inflatable, Fabric-based, Humanoid Robot
,”
2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids)
,
Seoul, South Korea
, pp.
1133
1140
.
2.
Hawkes
,
E. W.
,
Blumenschein
,
L. H.
,
Greer
,
J. D.
, and
Okamura
,
A. M.
,
2017
, “
A Soft Robot That Navigates Its Environment Through Growth
,”
Sci. Rob.
,
2
(
8
), p.
eaan3028
. 10.1126/scirobotics.aan3028
3.
Ranzani
,
T.
,
Gerboni
,
G.
,
Cianchetti
,
M.
, and
Menciassi
,
A.
,
2015
, “
A Bioinspired Soft Manipulator for Minimally Invasive Surgery
,”
Bioinspir. Biomim.
,
10
(
3
). 10.1088/1748-3190/10/3/035008
4.
Wehner
,
M.
,
Quinlivan
,
B.
,
Aubin
,
P. M.
,
Martinez-Villalpando
,
E.
,
Baumann
,
M.
,
Stirling
,
L.
,
Holt
,
K.
,
Wood
,
R.
, and
Walsh
,
C.
,
2013
, “
A Lightweight Soft Exosuit for Gait Assistance
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Karlsruhe, Germany
, pp.
3362
3369
.
5.
Polygerinos
,
P.
,
Wang
,
Z.
,
Galloway
,
K. C.
,
Wood
,
R. J.
, and
Walsh
,
C. J.
,
2015
, “
Soft Robotic Glove for Combined Assistance and At-home Rehabilitation
,”
Rob. Auton. Syst.
,
73
, pp.
135
143
. 10.1016/j.robot.2014.08.014
6.
Mazzolai
,
B.
,
Margheri
,
L.
,
Cianchetti
,
M.
,
Dario
,
P.
, and
Laschi
,
C.
,
2012
, “
Soft-Robotic Arm Inspired by the Octopus: II. From Artificial Requirements to Innovative Technological Solutions
,”
Bioinspir. Biomim.
,
7
(
2
). 10.1088/1748-3182/7/2/025005
7.
Cianchetti
,
M.
,
Calisti
,
M.
,
Margheri
,
L.
,
Kuba
,
M.
, and
Laschi
,
C.
,
2015
, “
Bioinspired Locomotion and Grasping in Water: The Soft Eight-arm OCTOPUS Robot
,”
Bioinspir. Biomim.
,
10
(
3
). 10.1088/1748-3190/10/3/035003
8.
Kim
,
Y.
,
Cheng
,
S. S.
, and
Desai
,
J. P.
,
2018
, “
Active Stiffness Tuning of a Spring-Based Continuum Robot for Mri-guided Neurosurgery
,”
IEEE Trans. Rob.
,
34
(
1
), pp.
18
28
. 10.1109/TRO.2017.2750692
9.
Yang
,
Y.
,
Chen
,
Y.
,
Wei
,
Y.
, and
Li
,
Y.
,
2016
, “
Novel Design and Three-Dimensional Printing of Variable Stiffness Robotic Grippers
,”
ASME. J. Mech. Rob.
,
8
(
6
), p.
061010
. 10.1115/1.4033728
10.
Paulino
,
G. H.
,
Qi
,
H. J.
,
Wu
,
J.
, and
Liu
,
K.
,
2017
, “
Programmable Deployment of Tensegrity Structures by Stimulus-Responsive Polymers
,”
Sci. Rep.
,
7
(
1
). 10.1038/s41598-016-0028-x
11.
Miriyev
,
A.
,
Stack
,
K.
, and
Lipson
,
H.
,
2017
, “
Soft Material for Soft Actuators
,”
Nat. Commun.
,
8
(
1
), p.
596
. 10.1038/s41467-017-00685-3
12.
Chautems
,
C.
,
Tonazzini
,
A.
,
Floreano
,
D.
, and
Nelson
,
B. J.
,
2017
, “
A Variable Stiffness Catheter Controlled with An External Magnetic Field
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, Canada
, pp.
181
186
.
13.
Kovacs
,
G.
,
Lochmatter
,
P.
, and
Wissler
,
M.
,
2007
, “
An Arm Wrestling Robot Driven by Dielectric Elastomer Actuators
,”
Smart Mater. Struct.
,
16
(
2
), p.
S306
. 10.1088/0964-1726/16/2/S16
14.
Kwon
,
G. H.
,
Park
,
J. Y.
,
Kim
,
J. Y.
,
Frisk
,
M. L.
,
Beebe
,
D. J.
, and
Lee
,
S. H.
,
2008
, “
Biomimetic Soft Multifunctional Miniature Aquabots
,”
Small
,
4
(
12
), pp.
2148
2153
. 10.1002/smll.200800315
15.
Shepherd
,
R. F.
,
Ilievski
,
F.
,
Choi
,
W.
,
Morin
,
S. A.
,
Stokes
,
A. A.
,
Mazzeo
,
A. D.
,
Chen
,
X.
,
Wang
,
M.
, and
Whitesides
,
G. M.
,
2011
, “
Multigait Soft Robot
,”
Proc. Natl. Acad. Sci. U.S.A.
,
108
(
51
), pp.
20400
20403
. 10.1073/pnas.1116564108
16.
Song
,
Y. S.
,
Sun
,
Y.
,
Van Den Brand
,
R.
,
Von Zitzewitz
,
J.
,
Micera
,
S.
,
Courtine
,
G.
, and
Paik
,
J.
,
2013
, “
Soft Robot for Gait Rehabilitation of Spinalized Rodents
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Tokyo, Japan
, pp.
971
976
.
17.
Mosadegh
,
B.
,
Polygerinos
,
P.
,
Keplinger
,
C.
,
Wennstedt
,
S.
,
Shepherd
,
R. F.
,
Gupta
,
U.
,
Shim
,
J.
,
Bertoldi
,
K.
,
Walsh
,
C. J.
, and
Whitesides
,
G. M.
,
2014
, “
Pneumatic Networks for Soft Robotics That Actuate Rapidly
,”
Adv. Funct. Mater.
,
24
(
15
), pp.
2163
2170
. 10.1002/adfm.201303288
18.
Decroly
,
G.
,
Mertens
,
B.
,
Lambert
,
P.
, and
Alain
,
D.
,
2020
, “
Design, Characterization and Optimization of a Soft Fluidic Actuator for Minimally Invasive Surgery
,”
Int. J. Comput. Assist. Radiol. Surg.
,
15
, pp.
333
340
. 10.1007/s11548-019-02081-2
19.
Overvelde
,
J. T. B.
,
Kloek
,
T.
,
D’haen
,
J. J. A.
, and
Bertoldi
,
K.
,
2015
, “
Amplifying the Response of Soft Actuators by Harnessing Snap-through Instabilities
,”
Proc. Natl. Acad. Sci. U. S. A.
,
112
(
35
), pp.
10863
10868
. 10.1073/pnas.1504947112
20.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
467
475
. 10.1038/nature14543
21.
Hawkes
,
E. W.
,
Christensen
,
D. L.
, and
Okamura
,
A. M.
,
2016
, “
Design and Implementation of a 300% Strain Soft Artificial Muscle
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
, pp.
4022
4029
.
22.
Yang
,
D.
,
Verma
,
M. S.
,
So
,
J.-H.
,
Mosadegh
,
B.
,
Keplinger
,
C.
,
Lee
,
B.
,
Khashai
,
F.
,
Lossner
,
E.
,
Suo
,
Z.
, and
Whitesides
,
G. M.
,
2016
, “
Buckling Pneumatic Linear Actuators Inspired by Muscle
,”
Adv. Mater. Technol.
,
1
(
3
), p. 1600055. 10.1002/admt.201600055
23.
Verrelst
,
B.
,
Ham
,
R. V.
,
Vanderborght
,
B.
,
Daerden
,
F.
,
Lefeber
,
D.
, and
Vermeulen
,
J.
,
2005
, “
The Pneumatic Biped “Lucy” Actuated With Pleated Pneumatic Artificial Muscles
,”
Auton. Rob.
,
18
(
2
), pp.
201
213
. 10.1007/s10514-005-0726-x
24.
De Greef
,
A.
,
Lambert
,
P.
, and
Delchambre
,
A.
,
2009
, “
Towards Flexible Medical Instruments: Review of Flexible Fluidic Actuators
,”
Precis. Eng.
,
33
(
4
), pp.
311
321
. 10.1016/j.precisioneng.2008.10.004
25.
Chou
,
C.-P.
, and
Hannaford
,
B.
,
1996
, “
Measurement and Modeling of McKibben Pneumatic Artificial Muscles
,”
IEEE. Trans. Rob. Autom.
,
12
(
1
), pp.
90
102
. 10.1109/70.481753
26.
Tondu
,
B.
, and
Lopez
,
P.
,
2000
, “
Modeling and Control of McKibben Artificial Muscle Robot Actuators
,”
IEEE Control Syst.
,
20
(
2
), pp.
15
38
. 10.1109/37.833638
27.
Tsagarakis
,
N.
, and
Caldwell
,
D. G.
,
2000
, “
Improved Modelling and Assessment of Pneumatic Muscle Actuators
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
San Francisco, CA
, Vol.
4
, pp.
3641
3646
.
28.
Krishnan
,
G.
,
Bishop-Moser
,
J.
,
Kim
,
C.
, and
Kota
,
S.
,
2015
, “
Kinematics of a Generalized Class of Pneumatic Artificial Muscles
,”
ASME. J. Mech. Rob.
,
7
(
4
), p.
041014
. 10.1115/1.4029705
29.
Daerden
,
F.
,
1999
, “
Conception and Realization of Pleated Pneumatic Artificial Muscles and Their Use As Compliant Actuation Elements
,” Ph.D. thesis,
Vrije Universiteit Brussel
.
30.
Ilievski
,
F.
,
Mazzeo
,
A. D.
,
Shepherd
,
R. F.
,
Chen
,
X.
, and
Whitesides
,
G. M.
,
2011
, “
Soft Robotics for Chemists
,”
Angew. Chem., Int. Ed.
,
50
(
8
), pp.
1890
1895
. 10.1002/anie.201006464
31.
Calderón
,
A. A.
,
Ugalde
,
J. C.
,
Zagal
,
J. C.
, and
Pérez-Arancibia
,
N. O.
,
2016
, “
Design, Fabrication and Control of a Multi-Material-Multi-Actuator Soft Robot Inspired by Burrowing Worms
,”
IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Dali, Yunnan Province, China
, pp.
31
38
.
32.
Gorissen
,
B.
,
Vincentie
,
W.
,
Al-Bender
,
F.
,
Reynaerts
,
D.
, and
Volder
,
M. D.
,
2013
, “
Modeling and Bonding-free Fabrication of Flexible Fluidic Microactuators With a Bending Motion
,”
J. Micromech. Microeng.
,
23
(
4
), p.
045012
. 10.1088/0960-1317/23/4/045012
33.
Bruyas
,
A.
,
Geiskopf
,
F.
,
Meylheuc
,
L.
, and
Renaud
,
P.
,
2014
, “
Combining Multi-Material Rapid Prototyping and Pseudo-Rigid Body Modeling for a New Compliant Mechanism
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
, pp.
3390
3396
.
34.
Chen
,
Y.
,
Le
,
S.
,
Tan
,
Q. C.
,
Lau
,
O.
,
Wan
,
F.
, and
Song
,
C.
,
2017
, “
A Reconfigurable Hybrid Actuator With Rigid and Soft Components
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Marina Bay Sands, Singapore
, pp.
58
63
.
35.
Comber
,
D. B.
,
Slightam
,
J. E.
,
Gervasi
,
V. R.
,
Neimat
,
J. S.
, and
Barth
,
E. J.
,
2016
, “
Design, Additive Manufacture, and Control of a Pneumatic MR-Compatible Needle Driver
,”
IEEE Trans. Rob.
,
32
(
1
), pp.
138
149
. 10.1109/TRO.2015.2504981
36.
Pfeil
,
A.
,
Barbé
,
L.
,
Wach
,
B.
,
Bruyas
,
A.
,
Geiskopf
,
F.
,
Nierenberger
,
M.
, and
Renaud
,
P.
,
2018
, “
A 3D-Printed Needle Driver Based on Auxetic Structure and Inchworm Kinematics
,”
ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC-CIE)
,
Quebec City, Canada
, p.
V05AT07A057
.
37.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
A Wiley-Interscience Publication
,
New York
.
OCLC: 247902557
.
38.
Vos
,
R.
, and
Barrett
,
R.
,
2011
, “
Mechanics of Pressure-Adaptive Honeycomb and Its Application to Wing Morphing
,”
Smart Mater. Struct.
,
20
(
9
), p.
094010
. 10.1088/0964-1726/20/9/094010
39.
Pagitz
,
M.
,
Lamacchia
,
E.
, and
Hol
,
J. M. A. M.
,
2012
, “
Pressure-Actuated Cellular Structures
,”
Bioinspir. Biomim.
,
7
(
1
), p.
016007
. 10.1088/1748-3182/7/1/016007
40.
Martinez
,
R. V.
,
Fish
,
C. R.
,
Chen
,
X.
, and
Whitesides
,
G. M.
,
2012
, “
Elastomeric Origami: Programmable Paper-Elastomer Composites as Pneumatic Actuators
,”
Adv. Funct. Mater.
,
22
(
7
), pp.
1376
1384
. 10.1002/adfm.201102978
41.
Li
,
S.
, and
Wang
,
K. W.
,
2015
, “
Fluidic Origami: A Plant-Inspired Adaptive Structure With Shape Morphing and Stiffness Tuning
,”
Smart Mater. Struct.
,
24
(
10
), p. 105031. 10.1088/0964-1726/24/10/105031
42.
Schmitt
,
F.
,
Piccin
,
O.
,
Barbé
,
L.
, and
Bayle
,
B.
,
2018
, “
Soft Robots Manufacturing: A Review
,”
Front. Rob. AI
,
5
, p. 84. 10.3389/frobt.2018.00084
43.
44.
Weiss
,
L. E.
,
Merz
,
R.
,
Prinz
,
F. B.
,
Neplotnik
,
G.
,
Padmanabhan
,
P.
,
Schultz
,
L.
, and
Ramaswami
,
K.
,
1997
, “
Shape Deposition Manufacturing of Heterogeneous Structures
,”
J. Manuf. Syst.
,
16
(
4
), pp.
239
248
. 10.1016/S0278-6125(97)89095-4
45.
Bruyas
,
A.
,
Geiskopf
,
F.
, and
Renaud
,
P.
,
2015
, “
Design and Modeling of a Large Amplitude Compliant Revolute Joint: The Helical Shape Compliant Joint
,”
ASME. J. Mech. Des.
,
137
(
8
), p.
085003
. 10.1115/1.4030650
46.
Schmitt
,
F.
,
Piccin
,
O.
,
Barbé
,
L.
, and
Bayle
,
B.
,
2018
, “
An Origami-Inspired Flexible Pneumatic Actuator
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
, pp.
436
441
.
47.
Evans
,
K. E.
,
1991
, “
Auxetic Polymers: A New Range of Materials
,”
Endeavour
,
15
(
4
), pp.
170
174
. 10.1016/0160-9327(91)90123-S
48.
Karnessis
,
N.
, and
Burriesci
,
G.
,
2013
, “
Uniaxial and Buckling Mechanical Response of Auxetic Cellular Tubes
,”
Smart Mater. Struct.
,
22
(
8
), p.
084008
. 10.1088/0964-1726/22/8/084008
49.
Azimian
,
H.
,
Francis
,
P.
,
Looi
,
T.
, and
Drake
,
J.
,
2014
, “
Structurally-Redesigned Concentric-Tube Manipulators with Improved Stability
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Chicago, IL
, pp.
2030
2035
.
50.
Mark
,
A. G.
,
Palagi
,
S.
,
Qiu
,
T.
, and
Fischer
,
P.
,
2016
, “
Auxetic Metamaterial Simplifies Soft Robot Design
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
, pp.
4951
4956
.
51.
Sedal
,
A.
,
Fisher
,
M. W.
,
Bishop-Moser
,
J.
,
Wineman
,
A.
, and
Kota
,
S.
,
2018
, “
Auxetic Sleeves for Soft Actuators With Kinematically Varied Surfaces
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
, pp.
464
471
.
52.
Gibson
,
L. J.
,
Ashby
,
M. F.
,
Schajer
,
G. S.
, and
Robertson
,
C. I.
,
1982
, “
The Mechanics of Two-dimensional Cellular Materials
,”
Proc. R. Soc. London. A. Math. Phys. Sci.
,
382
(
1782
), pp.
25
42
.
53.
Bruyas
,
A.
,
Geiskopf
,
F.
, and
Renaud
,
P.
,
2015
, “
Toward Unibody Robotic Structures With Integrated Functions Using Multimaterial Additive Manufacturing: Case Study of an MRI-Compatible Interventional Device
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
, pp.
1744
1750
.
54.
Pfeil
,
A.
,
Barbé
,
L.
,
Geiskopf
,
F.
,
Gayral
,
T.
,
Rubbert
,
L.
, and
Renaud
,
P.
,
2019
, “
”Design Tools for Printed Robots: Experience and Ongoing Work Using Multi-Material Additive Manufacturing. Workshop
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Montreal, Canada
.
You do not currently have access to this content.