Abstract

In soft robotics, there is still a great need for a universal but simple gripper that realizes a high level of adaptability as well as a gentle touch to a wide variety of unknown objects of different size, shape, stiffness, and weight without the use of sensors or vision. Various, mostly complex grippers already exist based on certain actuation concepts. However, each solution has specific limitations, especially regarding gripping different soft and delicate objects. Therefore, this paper introduces a new approach to design a simple, adaptive, and versatile soft robotic two-finger gripper that is based on compliant mechanisms. More specifically, an inherently gentle touch is realized by utilizing an optimally synthesized mechanism with distributed compliance in combination with a conventional linear actuator. It is shown by finite elements method (FEM) simulations that the gripper realizes a high force and motion transmission at the same time. Furthermore, it is demonstrated by tests with a gripper prototype that reliable, safe, and fast grasping as well as manipulation are possible for a wide variety of objects. It is shown that beside regular and stiff objects also very challenging objects can be easily gripped, e.g., small, irregular, soft, and squeezable objects like fruits, berries, and vegetables. Moreover, it is confirmed that the developed compliant two-finger gripper can be used beneficially without sensors and control for differently sized and shaped objects with a comparable weight.

References

1.
Zinn
,
M.
,
Roth
,
B.
,
Khatib
,
O.
, and
Salisbury
,
J. K.
,
2004
, “
A New Actuation Approach for Human Friendly Robot Design
,”
Int. J. Rob. Res.
,
23
(
4–5
), pp.
379
398
. 10.1177/0278364904042193
2.
Stilli
,
A.
,
Wurdemann
,
H. A.
, and
Althoefer
,
K.
,
2017
, “
A Novel Concept for Safe, Stiffness-Controllable Robot Links
,”
Soft Rob.
,
4
(
1
), pp.
16
22
. 10.1089/soro.2016.0015
3.
Raatz
,
A.
,
Blankemeyer
,
S.
,
Runge
,
G.
,
Bruns
,
G.
, and
Borchert
,
G.
,
2015
, “Opportunities and Challenges for the Design of Inherently Safe Robots,”
Soft Robotics: Transferring Theory to Application
,
A.
Verl
,
A.
Albu-Schäffer
,
O.
Brock
, and
A.
Raatz
, eds.,
Springer
,
Berlin, Germany
, pp.
173
183
.
4.
Memar
,
A. H.
, and
Esfahani
,
E. T.
,
2019
, “
A Robot Gripper With Variable Stiffness Actuation for Enhancing Collision Safety
,”
IEEE Transactions on Industrial Electronics
,
Ahead of print 10 September 2019
. 10.1109/TIE.2019.2938475.
5.
Bohg
,
J.
,
Morales
,
A.
,
Asfour
,
T.
, and
Kragic
,
D.
,
2014
, “
Data-Driven Grasp Synthesis–A Survey
,”
IEEE Trans. Rob.
,
30
(
2
), pp.
289
309
. 10.1109/TRO.2013.2289018
6.
Butterfass
,
J.
,
Grebenstein
,
M.
,
Liu
,
H.
, and
Hirzinger
,
G.
,
2001
, “
DLR-Hand II: Next Generation of a Dextrous Robot Hand
,”
2001 IEEE International Conference on Robotics and Automation
,
Seoul, South Korea, Piscataway, NJ
,
May 21–26, 2001
,
IEEE
, pp.
109
114
.
7.
Albu
,
A.
,
Precup
,
R.-E.
, and
Teban
,
T.-E.
,
2019
, “
Results and Challenges of Artificial Neural Networks Used for Decision-Making and Control in Medical Applications
,”
Facta Universitatis J.—Series Mech. Eng.
,
17
(
3
), pp.
285
308
. 10.22190/FUME190327035A
8.
Catalano
,
M. G.
,
Grioli
,
G.
,
Farnioli
,
E.
,
Serio
,
A.
,
Piazza
,
C.
, and
Bicchi
,
A.
,
2014
, “
Adaptive Synergies for the Design and Control of the Pisa/IIT SoftHand
,”
Int. J. Rob. Res.
,
33
(
5
), pp.
768
782
. 10.1177/0278364913518998
9.
Li
,
M.
,
Hang
,
K.
,
Kragic
,
D.
, and
Billard
,
A.
,
2016
, “
Dexterous Grasping Under Shape Uncertainty
,”
Rob. Autonomous Syst.
,
75
(
Part B
), pp.
352
364
. 10.1016/j.robot.2015.09.008
10.
Montambault
,
S.
, and
Gosselin
,
C. M.
,
2001
, “
Analysis of Underactuated Mechanical Grippers
,”
ASME J. Mech. Des.
,
123
(
3
), pp.
367
374
. 10.1115/1.1374198
11.
Larouche
,
L-A
, and
Birglen
,
L.
,
2013
, “
Assisted Design of Linkage-Driven Adaptive Soft Fingers
,”
Ind. Rob.: An Int. J.
,
40
(
4
), pp.
337
346
. 10.1108/01439911311320840
12.
Stavenuiter
,
R. A. J.
,
Birglen
,
L.
, and
Herder
,
J. L.
,
2017
, “
A Planar Underactuated Grasper With Adjustable Compliance
,”
Mech. Mach. Theory
,
112
, pp.
295
306
. 10.1016/j.mechmachtheory.2016.08.001
13.
Borisov
,
I. I.
,
Borisov
,
O. I.
,
Gromov
,
V. S.
,
Vlasov
,
S. M.
, and
Kolyubin
,
S. A.
,
2018
, “
The UHVAT Gripper: Usable Holding Versatile Adjustable Tool to Grasp Different Objects
,”
IFAC-PapersOnLine
,
51
(
11
), pp.
722
727
. 10.1016/j.ifacol.2018.08.404
14.
Sumi
,
S.
,
Böhm
,
V.
, and
Zimmermann
,
K.
,
2017
, “
A Multistable Tensegrity Structure With a Gripper Application
,”
Mech. Mach. Theory
,
114
, pp.
204
217
. 10.1016/j.mechmachtheory.2017.04.005
15.
Choi
,
H.
, and
Koç
,
M.
,
2006
, “
Design and Feasibility Tests of a Flexible Gripper Based on Inflatable Rubber Pockets
,”
Int. J. Mach. Tools Manuf.
,
46
(
12–13
), pp.
1350
1361
. 10.1016/j.ijmachtools.2005.10.009
16.
Alt
,
N.
,
Schuwerk
,
C.
,
Lochbrunner
,
S.
, and
Denninger
,
G.
,
2018
, “
RoVi, Robotic Manipulator With Visuo-Haptic Sensing
,”
Impact
,
2018
(
11
), pp.
45
47
. 10.21820/23987073.2018.11.45
17.
Xu
,
J.
,
Alt
,
N.
,
Zhang
,
Z.
, and
Steinbach
,
E.
,
2017
, “
Grasping Posture Estimation for a Two-Finger Parallel Gripper With Soft Material Jaws Using a Curved Contact Area Friction Model
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore, Piscataway, NJ
,
May 29–June 3, 2017
,
IEEE
, pp.
2253
2226
.
18.
Hughes
,
J.
,
Culha
,
U.
,
Giardina
,
F.
,
Guenther
,
F.
,
Rosendro
,
A.
, and
Iida
,
F.
,
2016
, “
Soft Manipulators and Grippers: A Review
,”
Frontiers Rob. AI
,
3
, pp.
20
. 10.3389/frobt.2016.00069
19.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
467
475
. 10.1038/nature14543
20.
Shintake
,
J.
,
Cacucciolo
,
V.
,
Floreano
,
D.
, and
Shea
,
H.
,
2018
, “
Soft Robotic Grippers
,”
Adv. Mater.
,
30
(
29
), p.
e1707035
. 10.1002/adma.201707035
21.
Festo AG & Co. KG
,
2019
, “
BionicSoftHand: Pneumatic Gripper Based on the Human Hand
,” www.festo.com/net/SupportPortal/Files/597078/Festo_BionicSoftHand_en.pdf, Accessed August 1, 2019.
22.
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Olsen
,
B. M.
,
2013
,
Handbook of Compliant Mechanisms
,
Wiley
,
Chichester
.
23.
Verotti
,
M.
,
Dochshanov
,
A.
, and
Belfiore
,
N. P.
,
2017
, “
A Comprehensive Survey on Microgrippers Design: Mechanical Structure
,”
ASME J. Mech. Des.
,
139
(
6
), p.
060801
. 10.1115/1.4036351
24.
Bütefisch
,
S.
,
Seidemann
,
V.
, and
Büttgenbach
,
S.
,
2002
, “
Novel Micro-Pneumatic Actuator for MEMS
,”
Sens. Actuators, A
,
97–98
(
A
), pp.
638
645
. 10.1016/S0924-4247(01)00843-3
25.
Liu
,
C.-H.
,
Chiu
,
C.-H.
,
Hsu
,
M.-C.
,
Chen
,
Y.
, and
Chiang
,
Y.-P.
,
2019
, “
Topology and Size–Shape Optimization of an Adaptive Compliant Gripper With High Mechanical Advantage for Grasping Irregular Objects
,”
Robotica
,
37
(
8
), pp.
1
18
.
26.
Milojević
,
A.
,
Linß
,
S.
,
Ćojbašić
,
Ž
,
Handroos
,
H.
,
Luostarinen
,
L.
, and
Zentner
,
L.
,
2018
, “
Adaptive Soft Robotic Gripper Based on Shape Morphing Compliant System
,”
International Conference on Reconfigurable Mechanisms and Robots (ReMAR)
,
Delft, The Netherlands, Piscataway, NJ
,
June 20–22, 2018
,
IEEE
, p.
10
.
27.
Zentner
,
L.
, and
Linß
,
S.
,
2019
,
Compliant Systems: Mechanics of Elastically Deformable Mechanisms, Actuators and Sensors
,
De Gruyter Oldenbourg
,
Berlin
.
28.
Wang
,
L.
,
Brodbeck
,
L.
, and
Iida
,
F.
,
2014
, “
Mechanics and Energetics in Tool Manufacture and Use: A Synthetic Approach
,”
J. R. Soc., Interface
,
11
(
100
), p.
20140827
. 10.1098/rsif.2014.0827
29.
Sun
,
J.
, and
Zhang
,
W.
,
2012
, “
A Novel Coupled and Self-Adaptive Under-Actuated Multi-Fingered Hand With Gear–Rack–Slider Mechanism
,”
J. Manuf. Syst.
,
31
(
1
), pp.
42
49
. 10.1016/j.jmsy.2011.09.001
30.
Odhner
,
L. U.
,
Jentoft
,
L. P.
,
Claffee
,
M. R.
,
Corson
,
N.
,
Tenzer
,
Y.
,
Ma
,
R. B.
,
Buehler
,
M.
,
Kohout
,
R.
,
Howe
,
R. D.
, and
Dollar
,
A. M.
,
2014
, “
A Compliant, Underactuated Hand for Robust Manipulation
,”
Int. J. Rob. Res.
,
33
(
5
), pp.
736
752
. 10.1177/0278364913514466
31.
Liarokapis
,
M.
, and
Dollar
,
A. M.
,
2017
, “
Deriving Dexterous, in-Hand Manipulation Primitives for Adaptive Robot Hands
,”
IROS IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vancouver, Canada, Piscataway, NJ
,
Sept. 24–28, 2017
,
IEEE
, pp.
1951
1958
.
32.
Dollar
,
A. M.
, and
Howe
,
R. D.
,
2010
, “
The Highly Adaptive SDM Hand: Design and Performance Evaluation
,”
Int. J. Rob. Res.
,
29
(
5
), pp.
585
597
. 10.1177/0278364909360852
33.
Firouzeh
,
A.
, and
Paik
,
J.
,
2017
, “
Grasp Mode and Compliance Control of an Underactuated Origami Gripper Using Adjustable Stiffness Joints
,”
IEEE/ASME Trans. Mech.
,
22
(
5
), pp.
2165
2173
. 10.1109/TMECH.2017.2732827
34.
Ham
,
K.
,
Han
,
J.
, and
Park
,
Y.-J.
,
2018
, “
Soft Gripper Using Variable Stiffness Mechanism and Its Application
,”
Int. J. Precis. Eng. Manuf.
,
19
(
4
), pp.
487
494
. 10.1007/s12541-018-0059-2
35.
Chen
,
F.
,
Xu
,
W.
,
Zhang
,
H.
,
Wang
,
Y.
,
Yiqiang
,
C.
,
Wang
,
M. Y.
,
Ren
,
H.
,
Zhu
,
J.
, and
Zhang
,
Y. F.
,
2018
, “
Topology Optimized Design, Fabrication, and Characterization of a Soft Cable-Driven Gripper
,”
IEEE Rob. Autom. Lett.
,
3
(
3
), pp.
2463
2470
. 10.1109/LRA.2018.2800115
36.
Liu
,
S.
,
Zhang
,
H.
,
Yin
,
R.
,
Chen
,
A.
, and
Zhang
,
W.
,
2017
, “Finite Element Analysis and Application of a Flexure Hinge Based Fully Compliant Prosthetic Finger,”
Advanced Computational Methods in Life System Modeling and Simulation
,
M.
Fei
,
S.
Ma
,
X.
Li
,
X.
Sun
,
L.
Jia
, and
Z.
Su
, eds.,
Springer
,
Singapore
, pp.
191
198
.
37.
Mutlu
,
R.
,
Alici
,
G.
,
in het Panhuis
,
M.
, and
Spinks
,
G. M.
,
2016
, “
3D Printed Flexure Hinges for Soft Monolithic Prosthetic Fingers
,”
Soft Rob.
,
3
(
3
), pp.
120
133
. 10.1089/soro.2016.0026
38.
Manti
,
M.
,
Hassan
,
T.
,
Passetti
,
G.
,
D’Elia
,
N.
,
Laschi
,
C.
, and
Cianchetti
,
M.
,
2015
, “
A Bioinspired Soft Robotic Gripper for Adaptable and Effective Grasping
,”
Soft Rob.
,
2
(
3
), pp.
107
116
. 10.1089/soro.2015.0009
39.
Giannaccini
,
M. E.
,
Georgilas
,
I.
,
Horsfield
,
I.
,
Peiris
,
B. H. P. M.
,
Lenz
,
A.
,
Pipe
,
A. G.
, and
Dogramadzi
,
S.
,
2014
, “
A Variable Compliance, Soft Gripper
,”
Autonomous Rob.
,
36
(
1–2
), pp.
93
107
. 10.1007/s10514-013-9374-8
40.
Calisti
,
M.
,
Giorelli
,
M.
,
Levy
,
G.
,
Mazzolai
,
B.
,
Hochner
,
B.
,
Laschi
,
C.
, and
Dario
,
P.
,
2011
, “
An Octopus-Bioinspired Solution to Movement and Manipulation for Soft Robots
,”
Bioinspiration Biomimetics
,
6
(
3
), p.
36002
. 10.1088/1748-3182/6/3/036002
41.
Gaiser
,
I.
,
Wiegand
,
R.
,
Ivlev
,
O.
,
Andreas
,
A.
,
Breitwieser
,
H.
,
Schulz
,
S.
, and
Bretthauer
,
G.
,
2012
, “Compliant Robotics and Automation with Flexible Fluidic Actuators and Inflatable Structures,”
Smart Actuation and Sensing Systems—Recent Advances and Future Challenges
,
G.
Berselli
, ed.,
In Tech
,
Rijeka, Croatia
.
42.
Isermann
,
J.
,
Ulrich
,
S.
, and
Bruns
,
R.
,
2016
, “
Modellierung, Regelung und Erprobung Eines Pneumatischen Biegeaktors für den Antrieb Eines Flexiblen Intralogistikgreifers
,”
Logist. J. Proceedings
,
2016
, pp.
1
8
.
43.
Polygerinos
,
P.
,
Wang
,
Z.
,
Overvelde
,
J. T. B.
,
Johannes
,
T. B.
,
Galloway
,
K. C.
,
Wood
,
R. J.
,
Bertoldi
,
K.
, and
Walsh
,
C. J.
,
2015
, “
Modeling of Soft Fiber-Reinforced Bending Actuators
,”
IEEE Trans. Rob.
,
31
(
3
), pp.
778
789
. 10.1109/TRO.2015.2428504
44.
Zhou
,
J.
,
Chen
,
S.
, and
Wang
,
Z.
,
2017
, “
A Soft-Robotic Gripper With Enhanced Object Adaptation and Grasping Reliability
,”
IEEE Rob. Autom. Lett.
,
2
(
4
), pp.
2287
2293
. 10.1109/LRA.2017.2716445
45.
Sanan
,
S.
,
Lynn
,
P. S.
, and
Griffith
,
S. T.
,
2014
, “
Pneumatic Torsional Actuators for Inflatable Robots
,”
ASME J. Mech. Robot.
,
6
(
3
), p.
31003
. 10.1115/1.4026629
46.
Martinez
,
R. V.
,
Branch
,
J. L.
,
Fish
,
C. R.
,
Jin
,
L.
,
Shepherd
,
R. F.
,
Nunes
,
R. M. D.
,
Suo
,
Z.
, and
Whitesides
,
G. M.
,
2013
, “
Robotic Tentacles With Three-Dimensional Mobility Based on Flexible Elastomers
,”
Adv. Mater.
,
25
(
2
), pp.
205
212
. 10.1002/adma.201203002
47.
Ilievski
,
F.
,
Mazzeo
,
A. D.
,
Shepherd
,
R. F.
,
Chen
,
X.
, and
Whitesides
,
G. M.
,
2011
, “
Soft Robotics for Chemists
,”
Angew. Chem.
,
50
(
8
), pp.
1890
1895
. 10.1002/anie.201006464
48.
Galloway
,
K. C.
,
Becker
,
K. P.
,
Phillips
,
B.
,
Kirby
,
J.
,
Licht
,
S.
,
Tchernov
,
D.
,
Wood
,
R.
, and
Gruber
,
D. F.
,
2016
, “
Soft Robotic Grippers for Biological Sampling on Deep Reefs
,”
Soft Robotics
,
3
(
1
), pp.
23
33
. 10.1089/soro.2015.0019
49.
Dick
,
I.
,
Ulrich
,
S.
, and
Bruns
,
R.
,
2018
, “
Autonomous Gripping With Individually Assembled Grippers of the Gripper Construction kit
,”
Logist. J. Proceedings
,
2018
, pp.
1
6
.
50.
Hao
,
Y.
,
Gong
,
Z.
,
Xie
,
Z.
,
Guan
,
S.
,
Ynag
,
X.
,
Wang
,
T.
, and
Wen
,
L.
,
2018
, “
A Soft Bionic Gripper With Variable Effective Length
,”
J. Bionic Eng.
,
15
(
2
), pp.
220
235
. 10.1007/s42235-018-0017-9
51.
Glick
,
P.
,
Suresh
,
S. A.
,
Ruffatto
,
D.
,
Cutkosky
,
M.
,
Tolley
,
M. T.
, and
Parness
,
A.
,
2018
, “
A Soft Robotic Gripper With Gecko-Inspired Adhesive
,”
IEEE Robot. Autom. Lett.
,
3
(
2
), pp.
903
910
. 10.1109/LRA.2018.2792688
52.
Marchese
,
A. D.
,
Katzschmann
,
R. K.
, and
Rus
,
D.
,
2015
, “
A Recipe for Soft Fluidic Elastomer Robots
,”
Soft Rob.
,
2
(
1
), pp.
7
25
. 10.1089/soro.2014.0022
53.
Deimel
,
R.
, and
Brock
,
O.
,
2016
, “
A Novel Type of Compliant and Underactuated Robotic Hand for Dexterous Grasping
,”
Int. J. Rob. Res.
,
35
(
1–3
), pp.
161
185
. 10.1177/0278364915592961
54.
Chua
,
M. C. H.
, and
Yeow
,
R. C. H.
,
2017
, “
Propulsion-Based Soft Robotic Actuation
,”
Robotics
,
6
(
4
), p.
34
. 10.3390/robotics6040034
55.
Terryn
,
S.
,
Brancart
,
J.
,
Lefeber
,
D.
,
van Assche
,
G.
, and
Vanderborht
,
B.
,
2017
, “
Self-Healing Soft Pneumatic Robots
,”
Sci. Rob.
,
2
(
9
), p.
eaan4268
. 10.1126/scirobotics.aan4268
56.
Kitamori
,
T.
,
Wada
,
A.
,
Nabae
,
H.
, and
Suzumori
,
K.
,
2016
, “
Untethered Three-Arm Pneumatic Robot Using Hose-Free Pneumatic Actuator
,”
IROS 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Daejeon, Korea, Piscataway, NJ
,
Oct. 9–14, 2016
,
IEEE
, pp.
543
548
.
57.
Doria
,
M.
, and
Birglen
,
L.
,
2009
, “
Design of an Underactuated Compliant Gripper for Surgery Using Nitinol
,”
ASME J. Med. Devices
,
3
(
1
), p.
011007
. 10.1115/1.3089249
58.
Cianchetti
,
M.
,
Licofonte
,
A.
,
Follador
,
M.
,
Rogai
,
F.
, and
Laschi
,
C.
,
2014
, “
Bioinspired Soft Actuation System Using Shape Memory Alloys
,”
Actuators
,
3
(
3
), pp.
226
244
. 10.3390/act3030226
59.
Yin
,
H.
,
Kong
,
C.
,
Li
,
J.
, and
Yang
,
G.
,
2018
, “
Modeling of Grasping Force for a Soft Robotic Gripper With Variable Stiffness
,”
Mech. Mach. Theory
,
128
, pp.
254
274
. 10.1016/j.mechmachtheory.2018.05.005
60.
Pettersson
,
A.
,
Davis
,
S.
,
Gray
,
J. O.
,
Dodd
,
T. J.
, and
Ohlsson
,
T.
,
2010
, “
Design of a Magnetorheological Robot Gripper for Handling of Delicate Food Products With Varying Shapes
,”
J. Food Eng.
,
98
(
3
), pp.
332
338
. 10.1016/j.jfoodeng.2009.11.020
61.
Chavez Vega
,
J.
,
Schorr
,
P.
,
Scharff
,
M.
,
Schale
,
F.
,
Böhm
,
V.
, and
Zimmermann
,
K.
,
2019
, “
Towards Magneto-Sensitive Elastomers Based End-Effectors for Gripping Application Technologies
,”
IEEE 2019 International Conference on Mechatronics
,
Ilmenau, Germany
,
Mar. 18–20, 2019
, pp.
217
222
.
62.
Araromi
,
O. A.
,
Gavrilovich
,
I.
,
Shintake
,
J.
,
Rosset
,
S.
,
Richard
,
M.
,
Gass
,
V.
, and
Shea
,
H. R.
,
2015
, “
Rollable Multisegment Dielectric Elastomer Minimum Energy Structures for a Deployable Microsatellite Gripper
,”
IEEE/ASME Trans. Mech.
,
20
(
1
), pp.
438
446
. 10.1109/TMECH.2014.2329367
63.
Shintake
,
J.
,
Rosset
,
S.
,
Schubert
,
B.
,
Floreano
,
D.
, and
Shea
,
H.
,
2016
, “
Versatile Soft Grippers With Intrinsic Electroadhesion Based on Multifunctional Polymer Actuators
,”
Adv. Mater.
,
28
(
2
), pp.
231
238
. 10.1002/adma.201504264
64.
Hamburg
,
E.
,
Vunder
,
V.
,
Johanson
,
U.
,
Kaasik
,
F.
, and
Aabloo
,
A.
,
2016
, “
Soft Shape-Adaptive Gripping Device Made From Artificial Muscle
,”
Proc. SPIE 9798 Electroactive Polymer Actuators and Devices (EAPAD), 97981Q
,
Las Vegas, NV
,
Mar. 20–24
.
65.
Brown
,
E.
,
Rodenberg
,
N.
,
Amend
,
J.
,
Mozeika
,
A.
,
Steltz
,
E.
,
Zakin
,
M. R.
,
Lipson
,
H.
, and
Jaeger
,
H. M.
,
2010
, “
Universal Robotic Gripper Based on the Jamming of Granular Material
,”
Proc. Natl. Acad. Sci. U. S. A.
,
107
(
44
), pp.
18809
18814
. 10.1073/pnas.1003250107
66.
Festo AG & Co. KG
,
2017
, “
FlexShapeGripper: Gripping Modelled on a Chameleon’s Tongue
,” http://www.festo.com/net/SupportPortal/Files/367915/Festo_FlexShapeGripper_en.pdf, Accessed August 1, 2019.
67.
Zhu
,
T.
,
Yang
,
H.
, and
Zhang
,
W.
,
2016
, “
A Spherical Self-Adaptive Gripper With Shrinking of an Elastic Membrane
,”
IEEE ICARM 2016 International Conference on Advanced Robotics and Mechatronics (ICARM)
,
Macau, China, Piscataway, NJ
,
Aug. 18–20, 2016
,
IEEE
, pp.
512
517
.
68.
Teoh
,
Z. E.
,
Phillips
,
B. T.
,
Becker
,
K. P.
,
Whittredge
,
G.
,
Weaver
,
J. C.
,
Hoberman
,
C.
,
Gruber
,
D. F.
, and
Wood
,
R. J.
,
2018
, “
Rotary-Actuated Folding Polyhedrons for Midwater Investigation of Delicate Marine Organisms
,”
Sci. Rob.
,
3
(
20
), p.
eaat5276
. 10.1126/scirobotics.aat5276
69.
TU Ilmenau
,
2012
, “
Compliant Gripper With Distributed Compliance
,” http://www.tu-ilmenau.de/fileadmin/media/gt/dateien/entwicklungen/pdf/engl/03_compliant_gripper_with_distributed_compliance.pdf, Accessed August 1, 2019.
70.
Tahier
,
A. M.
,
Naselli
,
G. A.
, and
Zoppi
,
M.
,
2018
, “
PASCAV Gripper: A Pneumatically Actuated Soft Cubical Vacuum Gripper
,”
International Conference on Reconfigurable Mechanisms and Robots (ReMAR)
,
Delft, The Netherlands, Piscataway, NJ
,
June 20–22, 2018
,
IEEE
, p.
6
.
71.
Li
,
S.
,
Stampfli
,
J. J.
,
Xu
,
H. J.
,
Malkin
,
E.
,
Diaz
,
E. V.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2019
, “
A Vacuum-Driven Origami “Magic-Ball” Soft Gripper
,”
2019 IEEE International Conference on Robotics and Automation (ICRA)
,
Montreal, Canada
,
May 20–24, 2019
.
72.
Griebel
,
S.
,
Keller
,
C.
, and
Zentner
,
L.
,
2015
, “
Energieeffizienter, Adaptiver Sauggreifer für Medizintechnische und Pharmazeutische Produkte
,”
11. Kolloquium Getriebetechnik
,
Garching, Germany, München
,
Sept., 28–30, 2015
,
TU München
, pp.
277
294
.
73.
Song
,
S.
, and
Sitti
,
M.
,
2014
, “
Soft Grippers Using Micro-Fibrillar Adhesives for Transfer Printing
,”
Adv. Mater.
,
26
(
28
), pp.
4901
4906
. 10.1002/adma.201400630
74.
Festo AG & Co. KG
,
2009
, “
BionicTripod With FinGripper: Flexible Tripod With Adaptive Gripper
,” www.festo.com/rep/en_corp/assets/pdf/Tripod_en.pdf, Accessed August 1, 2019.
75.
Zapciu
,
A.
,
Constantin
,
G.
,
Popescu
,
D.
,
Bondrea
,
I.
,
Simion
,
C.
, and
Inţă
,
M.
,
2017
, “
Adaptive Robotic End-Effector With Embedded 3D-Printed Sensing Circuits
,”
MATEC Web of Conferences
,
121
(
13
), p.
8008
. 10.1051/matecconf/201712108008
76.
Hashizume
,
J.
,
Huh
,
T. M.
,
Suresh
,
S. A.
, and
Cutkosky
,
M. R.
,
2019
, “
Capacitive Sensing for a Gripper With Gecko-Inspired Adhesive Film
,”
IEEE Rob. Autom. Lett.
,
4
(
2
), pp.
677
683
. 10.1109/LRA.2019.2893154
77.
Festo AG & Co. KG
,
2014
, “
MultiChoiceGripper: Variable Gripping Based on the Human Hand
,” http://www.festo.com/net/SupportPortal/Files/333986/Festo_MultiChoiceGripper_en.pdf, Accessed August 1, 2019.
78.
Jung
,
G.-P.
,
Koh
,
J.-S.
, and
Cho
,
K.-J.
,
2013
, “
Underactuated Adaptive Gripper Using Flexural Buckling
,”
IEEE Trans. Rob.
,
29
(
6
), pp.
1396
1407
. 10.1109/TRO.2013.2273842
79.
Basson
,
C. I.
,
Bright
,
G.
, and
Walker
,
A. J.
,
2017
, “
Analysis of Flexible End-Effector for Geometric Conformity in Reconfigurable Assembly Systems: Testing Geometric Structure of Grasping Mechanism for Object Adaptability
,”
2017 Pattern Recognition Association of South Africa and Robotics and Mechatronics International Conference (PRASA-RobMech)
,
Free State, South Africa, Piscataway, NJ
,
Nov. 29–Dec. 1, 2017
,
IEEE
, pp.
92
97
.
80.
Crooks
,
W.
,
Vukasin
,
G.
,
O’Sullivan
,
M.
,
Messner
,
W.
, and
Rogers
,
C.
,
2016
, “
Fin Ray® Effect Inspired Soft Robotic Gripper: From the RoboSoft Grand Challenge Toward Optimization
,”
Frontiers Rob. AI
,
3
, pp.
465
. 10.3389/frobt.2016.00070
81.
Jentzsch
,
A.
,
Böhm
,
V.
,
Greiser
,
S.
, and
Zentner
,
L.
,
2010
, “
An Approach to Electromagnetic Actuated Compliant Mechanisms
,”
Proceedings of the 12th International Conference on New Actuators
,
Bremen, Germany
,
June 14–16
, pp.
681
684
.
82.
Liu
,
C.-H.
,
Chen
,
T.-L.
,
Chiu
,
C.-H.
,
Hsu
,
M.-C.
,
Chen
,
Y.
,
Pai
,
T.-Y.
,
Peng
,
W.-G.
, and
Chiang
,
Y.-P.
,
2018
, “
Optimal Design of a Soft Robotic Gripper for Grasping Unknown Objects
,”
Soft Rob.
,
5
(
4
), pp.
452
465
. 10.1089/soro.2017.0121
83.
Steutel
,
P.
,
Kragten
,
G. A.
, and
Herder
,
J. L.
,
2010
, “
Design of an Underactuated Finger With a Monolithic Structure and Largely Distributed Compliance
,”
Proceedings of the ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal, Canada
,
Aug. 15–18
, ASME, New York, NY, pp.
355
363
.
84.
Chin
,
L.
,
Lipton
,
J.
,
MacCurdy
,
R.
,
Romanishin
,
J.
,
Sharma
,
C.
, and
Rus
,
D.
,
2018
, “
Compliant Electric Actuators Based on Handed Shearing Auxetics
,”
2018 IEEE International Conference on Soft Robotics (RoboSoft)
,
Livorno, Italy, Piscataway, NJ
,
Apr. 24–28
,
IEEE
, pp.
100
107
.
85.
Kaur
,
M.
, and
Kim
,
W. S.
,
2019
, “
Toward a Smart Compliant Robotic Gripper Equipped With 3D-Designed Cellular Fingers
,”
Adv. Intell. Syst
,
1
(
3
), p.
1900019
. 10.1002/aisy.201900019
86.
Thuruthel
,
T. G.
,
Abidi
,
S. H.
,
Cianchetti
,
M.
,
Laschi
,
C.
, and
Falotico
,
E.
,
2019
, “
A Bistable Soft Gripper With Mechanically Embedded Sensing and Actuation for Fast Closed-Loop Grasping
,” https://arxiv.org/abs/1902.04896, Accessed August 15, 2019.
87.
Liu
,
C.-H.
,
Huang
,
G.-F.
,
Chiu
,
C.-H.
, and
Pai
,
T.-Y.
,
2018
, “
Topology Synthesis and Optimal Design of an Adaptive Compliant Gripper to Maximize Output Displacement
,”
J. Intell. Rob. Syst.
,
90
(
3–4
), pp.
287
304
. 10.1007/s10846-017-0671-x
88.
Milojević
,
A.
, and
Pavlović
,
N. D.
,
2016
, “
Development of a New Adaptive Shape Morphing Compliant Structure With Embedded Actuators
,”
J. Intell. Mater. Syst. Struct.
,
27
(
10
), pp.
1306
1328
. 10.1177/1045389X15590270
89.
Dirksen
,
F.
,
2013
, “
Non-Intuitive Design of Compliant Mechanisms Possessing Optimized Flexure Hinges
,”
Ph.D. dissertation
,
Helmut-Schmidt-University
,
Hamburg, Germany
.
90.
Gallego
,
J. A.
, and
Herder
,
J. L.
,
2009
, “
Synthesis Methods in Compliant Mechanisms: An Overview
,”
Proceedings of the ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE2009)
,
San Diego, CA
,
Aug. 20–Sept. 2, 2009
,
ASME
, p.
22
.
You do not currently have access to this content.