Abstract

This paper proposes a novel family of the legged mobile lander (LML) with multi-loop chains to enable the stationary lander to walk, which is helpful to the Return and Base construction missions in the planetary exploration project. Generally, there are many issues that need to be focused, but one of the key issues is during the landing phase, for which the lander needs to be designed as a truss with ability to bear a large impact, while during the walking phase, the lander needs to be designed as a mechanism with flexible walking ability. To resolve this issue, a novel method for designing a mechanism based on a truss, which also can be called as the truss-mechanism transformation (TMT) method is developed. First, the detailed concept of the same topological arrangements (TAs) of a truss and a mechanism is proposed. Two singularity positions for the truss-mechanism transform are introduced. Second, following the concept, the procedure for designing a mechanism based on the TMT method is presented. Third, some basic knowledge for the creative design of the mechanism is introduced, including the intersection rules of motion characteristics, motion characteristic relationship of multi-loop mechanisms, and so on. Fourth, according to the procedure of the TMT method, numerous novel structures of LMLs with multi-loop chains are obtained. Finally, after the type qualitative evaluation, one typical LML is selected as an example to show its functions among stowed, walking, and orientation positions.

References

1.
Donahue
,
B. B.
,
Caplin
,
G.
,
Smith
,
D. B.
,
Behrens
,
J. W.
, and
Maulsby
,
C.
,
2008
, “
Lunar Lander Concepts for Human Exploration
,”
J. Spacecr. Rockets
,
45
(
2
), pp.
383
393
. 10.2514/1.29270
2.
Hapke
,
B.
,
1967
, “
Surveyor I and Luna IX Pictures and the Lunar Soil
,”
Icarus
,
6
(
1–3
), pp.
254
269
. 10.1016/0019-1035(67)90022-X
3.
Williams
,
R. J.
, and
Gibson
,
E. K.
,
1972
, “
The Origin and Stability of Lunar Goethite, Hematite and Magnetite
,”
Earth Planet. Sci. Lett.
,
17
(
1
), pp.
84
88
. 10.1016/0012-821X(72)90261-0
4.
Shelton
,
D. H.
,
1975
, “
Apollo Experience Report—Guidance and Control Systems: Lunar Module Stabilization and Control System
,” NASA TND-8086.
5.
Parkinson
,
R.
,
1999
, “
The Use of System Models in the EuroMoon Spacecraft Design
,”
Acta Astronaut.
,
44
(
7–12
), pp.
437
443
. 10.1016/S0094-5765(99)00088-0
6.
Okada
,
T.
,
Sasaki
,
S.
,
Sugihara
,
T.
,
Saiki
,
K.
,
Akiyama
,
H.
,
Ohtake
,
M.
,
Takeda
,
H.
,
Hasebe
,
N.
,
Kobayashi
,
M.
,
Haruyama
,
J.
,
Shirai
,
K.
,
Kato
,
M.
,
Kubota
,
T.
,
Kunii
,
Y.
, and
Kuroda
,
Y.
,
2006
, “
Lander and Rover Exploration on the Lunar Surface: A Study for SELENE-B Mission
,”
Adv. Space Res.
,
37
(
1
), pp.
88
92
. 10.1016/j.asr.2005.05.097
7.
Prinzell
,
L. J.
, III
,
Kramer
,
L. J.
,
Norman
,
R. M.
,
Arthur
,
J. J.
, III
,
Williams
,
S. P.
,
Shelton
,
K. J.
, and
Bailey
,
R. E.
,
2009
, “
Synthetic and Enhanced Vision System for Altair Lunar Lander
,”
15th International Symposium on Aviation Psychology
,
April 27
.
8.
Wu
,
W.
, and
Yu
,
D.
,
2014
, “
Key Technologies in the Chang’E-3 Soft-Landing Project
,”
J. Deep Space Explor.
,
1
(
2
), pp.
105
109
.
9.
He
,
P. J. L. Z. Z.
,
2008
, “
Conceptual Design of a Lunar Lander
,”
Spacecr. Eng.
,
17
(
1
), pp.
18
23
.
10.
Heet
,
T. L.
,
Arvidson
,
R.
,
Cull
,
S.
,
Mellon
,
M.
, and
Seelos
,
K.
, 2009, “
Geomorphic and Geologic Settings of the Phoenix Lander Mission Landing Site
,”
J. Geophys. Res. E: Planets
,
114
, pp.
1
19
. 10.1029/2009je003416
11.
Liang
,
L.
,
Zhang
,
Z.
,
Guo
,
L.
,
Yang
,
C.
,
Zeng
,
Y.
,
Li
,
M.
, and
Peijian
,
Y. E.
,
2015
, “
Mobile Lunar Lander Crewed Lunar Exploration Missions
,”
Manned Spaceflight
,
21
(
5
), pp.
472
478
.
12.
Lin
,
R.
,
Guo
,
W.
,
Li
,
M.
,
Hu
,
Y.
, and
Han
,
Y.
,
2017
, “
Novel Design of a Legged Mobile Lander for Extraterrestrial Planet Exploration
,”
Int. J. Adv. Rob. Syst.
,
14
(
6
), pp.
1
16
. 10.1177/1729881417746120
13.
Lin
,
R.
,
Guo
,
W.
,
Chen
,
X.
, and
Li
,
M.
,
2018
, “
Type Synthesis of Legged Mobile Landers With One Passive Limb Using the Singularity Property
,”
Robotica
,
36
(
12
), pp.
1836
1856
. 10.1017/S0263574718000760
14.
Lin
,
R.
,
Guo
,
W.
, and
Li
,
M.
,
2018
, “
Novel Design of Legged Mobile Landers With Decoupled Landing and Walking Functions Containing a Rhombus Joint
,”
ASME J. Mech. Rob.
,
10
(
6
), p.
061017
. 10.1115/1.4040884
15.
Shoham
,
M.
, and
Roth
,
B.
,
1997
, “
Connectivity in Open and Closed Loop Robotic Mechanisms
,”
Mech. Mach. Theory
,
32
(
3
), pp.
279
293
. 10.1016/S0094-114X(96)00057-2
16.
Deng
,
Z.
,
Yang
,
F.
, and
Jianguo
,
T.
,
2012
, “
Adding Sub-Chain Method for Structural Synthesis of Planar Closed Kinematic Chains
,”
Chin. J. Mech. Eng.
,
25
(
2
), pp.
206
213
. 10.3901/CJME.2012.02.206
17.
Li
,
Q.
, and
Hervé
,
J. M.
,
2017
, “
Type Synthesis of 3-DOF RPR-Equivalent Parallel Mechanisms
,”
IEEE Trans. Rob.
,
30
(
6
), pp.
1333
1343
. 10.1109/TRO.2014.2344450
18.
Gao
,
F.
,
Li
,
W.
,
Zhao
,
X.
,
Jin
,
Z.
, and
Zhao
,
H.
,
2002
, “
New Kinematic Structures for 2-, 3-, 4-, and 5-DOF Parallel Manipulator Designs
,”
Mech. Mach. Theory
,
37
(
11
), pp.
1395
1411
. 10.1016/S0094-114X(02)00044-7
19.
Huang
,
Z.
, and
Li
,
Q. C.
,
2002
, “
General Methodology for Type Synthesis of Symmetrical Lower-Mobility Parallel Manipulators and Several Novel Manipulators
,”
Int. J. Rob. Res.
,
21
(
2
), pp.
131
146
. 10.1177/027836402760475342
20.
Kong
,
X.
,
2013
, “
Type Synthesis of 3-DOF Parallel Manipulators With Both a Planar Operation Mode and a Spatial Translational Operation Mode
,”
J. Mech. Rob.
,
5
(
4
), p.
041015
. 10.1115/1.4025219
21.
Gogu
,
G.
,
2004
, “
Structural Synthesis of Fully-Isotropic Translational Parallel Robots via Theory of Linear Transformations
,”
Eur. J. Mech. A/Solids
,
23
(
6
), pp.
1021
1039
. 10.1016/j.euromechsol.2004.08.006
22.
Yang
,
T. L.
,
Liu
,
A. X.
,
Jin
,
Q.
,
Luo
,
Y. F.
,
Shen
,
H. P.
, and
Hang
,
L. B.
,
2009
, “
Position and Orientation Characteristic Equation for Topological Design of Robot Mechanisms
,”
ASME J. Mech. Des.
,
131
(
2
), p.
021001
. 10.1115/1.2965364
23.
Huang
,
T.
,
Dong
,
C.
,
Liu
,
H.
,
Sun
,
T.
, and
Chetwynd
,
D.
,
2018
, “
A Simple and Visually Orientated Approach for Type Synthesis of Overconstrained 1T2R Parallel Mechanisms
,”
Robotica
, pp.
1
13
. 10.1017/S0263574718000395
24.
Xie F
,
G.
,
Li T
,
M.
, and
Liu X
,
J.
,
2013
, “
Type Synthesis of 4-DOF Parallel Kinematic Mechanisms Based on Grassmann Line Geometry and Atlas Method
,”
Chin. J. Mech. Eng.
,
26
(
6
), pp.
1073
1081
. 10.3901/CJME.2013.06.1073
25.
Lin
,
R.
,
Guo
,
W.
, and
Gao
,
F.
,
2016
, “
Type Synthesis of a Family of Novel 4-, 5- and 6-DOF Sea Lion Ball Mechanisms With Three Limbs
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021023
. 10.1115/detc2015-46603
26.
Teutan
,
E.
,
Stan S
,
D.
,
Verdes
,
D.
, and
Balan
,
R.
,
2009
, “
Virtual Reality Simulation of Tetrobot Parallel Robot for Medical Applications
,”
International Conference on Advancements of Medicine and Health Care Through Technology
,
Springer
,
Berlin Heidelberg
, pp.
177
180
.
27.
Tao
,
J. F.
,
Qin
,
C. J.
,
Xiao
,
D. Y.
,
Shi
,
H. T.
,
Ling
,
X.
,
Li
,
B. C.
, and
Liu
,
C. L.
,
2020
, “
Timely Chatter Identification for Robotic Drilling Using a Local Maximum Synchrosqueezing-Based Method
,”
J. Intell. Manuf.
,
31
(
5
), pp.
1243
1255
. 10.1007/s10845-019-01509-5
28.
Zhang
,
J.
,
Xu
,
Z.
, and
Zang
,
W.
,
2007
, “
The New Method of Confirming the Dead-Point Location of the Plane Lower Four-Bar Linkage
,”
Forest Eng.
,
23
(
4
), pp.
28
40
29.
Pan
,
Y.
, and
Gao
,
F.
,
2014
, “
Leg Kinematic Analysis and Prototype Experiments of Walking-Operating Multifunctional Hexapod Robot
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
228
(
12
), pp.
2217
2232
. 10.1177/0954406213516087
You do not currently have access to this content.