Abstract

This paper proposes a catheter robot system for cardiac ablation therapy. The robot mechanism for actuating the catheter and the control methods of the catheter tip position will be suggested. The robot system consists of a front module and a handle-control module. The front module is a dual-gripper mechanism for inserting and rotating the catheter without slip between the catheter and gripper, and the handle-control module is for controlling the knob for the bending motion of the catheter. The proposed dual-gripper mechanism has the advantage of large contact surface between the grippers and the catheter, like the human finger, allowing it to form a stable grip of the catheter. However, for continuous insertion, the grippers should be controlled interactively. To achieve this, we explain the motion-planning and trajectory-generation methods. Moreover, we propose a control method that can intuitively control the position of the catheter using a mapping system as manual work. We explain the method of updating the Jacobian model in real time using two position sensors attached to the catheter. Finally, we show the simulation and experimental results to confirm the proposed mechanism and control methods useful for controlling the catheter

References

1.
Josephson
,
M.
,
2008
,
Clinical Cardiac Electrophysiology: Techniques and Interpretations
,
Lippincott Williams & Wilkins
,
Philadelphia, PA
.
2.
Hausegger
,
K.
,
Schedlbauer
,
P.
,
Deutschmann
,
H.
, and
Tiesenhausen
,
K.
,
2001
, “
Complications in Endoluminal Repair of Abdominal Aortic Aneurysms
,”
Eur. J. Radiol.
,
39
(
1
), pp.
22
33
. 10.1016/S0720-048X(01)00339-4
3.
Thakur
,
Y.
,
Bax
,
J.
,
Holdsworth
,
D.
, and
Drangova
,
M.
,
2009
, “
Design and Performance Evaluation of a Remote Catheter Navigation System
,”
IEEE Trans. Biomed. Eng
,
56
(
7
), pp.
1901
1908
. 10.1109/TBME.2009.2017203
4.
Park
,
J.
,
Choi
,
J.
,
Pak
,
H.
,
Song
,
S.
,
Lee
,
J.
,
Park
,
Y.
,
Shin
,
S.
, and
Sun
,
K.
,
2010
, “
Development of a Force-Reflecting Robotic Platform for Cardiac Catheter Navigation
,”
Artif Organs
,
34
(
11
), pp.
1034
1039
. 10.1111/j.1525-1594.2010.01142.x
5.
Loschak
,
P.
,
Brattain
,
L.
, and
Howe
,
R.
,
2013
, “
Automated Pointing of Cardiac Imaging Catheters
,”
International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, pp.
5794
5799
.http://dx.doi.org./10.1109/ICRA.2013.6631410
6.
Gao
,
Y. F.
,
Liu
,
H.
, and
Guo
,
S.
,
2011
, “
The Master-Slave Catheterisation System for Positioning the Steerable Catheter
,”
Int. J. Mech. Autom.
,
1
(
3-4
), pp.
143
152
. 10.1504/ijma.2011.045271
7.
Meng
,
C.
,
Sun
,
S.
,
Guan
,
S.
,
Liu
,
Y.
, and
Wang
,
T.
,
2017
, “
A New Design of Two-Fingered Catheter Operating Robot for Vascular Interventional Surgery
,”
Int. J. Adv. Rob. Autom.
,
2
(
2
), pp.
1
8
. 10.15226/2473-3032/2/2/00126
8.
Fu
,
Y.
,
Gao
,
A.
,
Liu
,
H.
,
Li
,
K.
, and
Liang
,
Z.
,
2011
, “
Development of a Novel Robotic Catheter System for Endovascular Minimally Invasive Surgery
,”
The 2011 IEEE/ICMEInternational Conference on Complex Medical Engineering
,
Harbin, Heilongjiang, China
, pp.
400
405
. 10.1109/iccme.2011.5876772
9.
Wang
,
K.
,
Lu
,
Q.
,
Chen
,
B.
,
Shen
,
Y.
, and
Xu
,
Z.
,
2019
, “
Endovascular Intervention Robot With Multi-Manipulators for Surgical Procedures: Dexterity, Adaptability, and Practicability
,”
Rob. Comput.-Integr. Manuf.
,
56
, pp.
75
84
. 10.1016/j.rcim.2018.09.004
10.
Fang
,
B.
,
Ju
,
M.
, and
Lin
,
C.
,
2007
, “
A New Approach to Develop Ionic Polymer–Metal Composites (IPMC) Actuator: Fabrication and Control for Active Catheter Systems
,”
Sens. Actuators, A
,
137
(
2
), pp.
321
329
. 10.1016/j.sna.2007.03.024
11.
Ikuta
,
K.
,
Ichikawa
,
H.
,
Suzuki
,
K.
, and
Yajima
,
D.
,
2006
, “
Multi-Degree of Freedom Hydraulic Pressure Driven Safety Active Catheter
,”
IEEE International Conference on Robotics and Automation
,
Orlando, FL
,
May 15–19
, pp.
4161
4166
, http://dx.doi.org/ 10.1109/ROBOT.2006.1642342
12.
Ikuta
,
K.
,
Matsuda
,
Y.
,
Yajima
,
D.
, and
Ota
,
Y.
,
2012
, “
Pressure Pulse Drive: A Control Method for the Precise Bending of Hydraulic Active Catheters
,”
IEEE/ASME Trans. Mechatronics
,
17
(
5
), pp.
876
883
. 10.1109/TMECH.2011.2138711
13.
Tung
,
A.
,
Park
,
B.
,
Niemeyer
,
G.
, and
Liang
,
D. H.
,
2007
, “
Laser-Machined Shape Memory Alloy Actuator for Active Catheters
,”
IEEE/ASME Trans. Mechatronics
,
12
(
4
), pp.
439
446
. 10.1109/TMECH.2007.901926
14.
Polygerinos
,
P.
,
Seneviratne
,
L.
,
Razavi
,
R.
,
Schaeffter
,
T.
, and
Althoefer
,
K.
,
2013
, “
Triaxial Catheter-Tip Force Sensor for MRI-Guided Cardiac Procedures
,”
IEEE/ASME Trans. Mechatronics
,
18
(
1
), pp.
386
396
. 10.1109/TMECH.2011.2181405
15.
Thiagalingam
,
A.
,
D'Avila
,
A.
,
Foley
,
L.
,
Guerrero
,
J.
,
Lambert
,
H.
,
Leo
,
G.
,
Ruskin
,
J.
, and
Reddy
,
V.
,
2010
, “
Importance of Catheter Contact Force During Irrigated Radiofrequency Ablation: Evaluation in a Porcine Ex vivo Model Using a Force-Sensing Catheter
,”
J. Cardiovasc. Electrophysiol.
,
21
(
7
), pp.
806
817
. 10.1111/j.1540-8167.2009.01693.x
16.
Natale
,
A.
,
Reddy
,
V.
,
Monir
,
G.
,
Wilber
,
D.
,
Lindsay
,
B.
,
McElderry
,
H.
,
Kantipudi
,
C.
,
Mansour
,
M.
,
Melby
,
D.
,
Packer
,
D.
,
Nakagawa
,
H.
,
Zhang
,
B.
,
Stagg
,
R.
,
Boo
,
L.
, and
Marchlinski
,
F.
,
2014
, “
Paroxysmal AF Catheter Ablation With a Contact Force Sensing Catheter
,”
J. Am. Coll. Cardiol.
,
64
(
7
), pp.
647
656
. 10.1016/j.jacc.2014.04.072
17.
Loschak
,
P.
,
Degirmenci
,
A.
,
Tenzer
,
Y.
,
Tschabrunn
,
C.
,
Anter
,
E.
, and
Howe
,
R.
,
2016
, “
A Four Degree of Freedom Robot for Positioning Ultrasound Imaging Catheters
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051016
. 10.1115/1.4032249
18.
Moon
,
Y.
,
Hu
,
Z.
,
Won
,
J.
,
Park
,
S.
,
Lee
,
H.
,
You
,
H.
,
Nam
,
G.
, and
Choi
,
J.
,
2018
, “
Novel Design of Master Manipulator for Robotic Catheter System
,”
Int. J. Control, Autom., Syst.
,
16
(
6
), pp.
2924
2934
. 10.1007/s12555-018-0089-7
19.
Guo
,
S.
,
Cui
,
J.
,
Xiao
,
N.
, and
Bao
,
X.
,
2018
, “
Simulation Analysis of Catheter Bending in Vascular Intervention Robot Based on ANSYS
,”
IEEE International Conference on Mechatronics and Automation
,
Changchun, China
,
Aug. 5–8
, pp.
585
590
, http://dx.doi.org/10.1109/ICMA.2018.8484526
20.
Chiaverini
,
S.
,
Siciliano
,
B.
, and
Villani
,
L.
,
1999
, “
A Survey of Robot Interaction Control Schemes With Experimental Comparison
,”
IEEE/ASME Trans. Mechatronics
,
4
(
3
), pp.
273
285
. 10.1109/3516.789685
21.
Yuan
,
H.
, and
Li
,
Z.
,
2018
, “
Workspace Analysis of Cable-Driven Continuum Manipulators Based on Static Model
,”
Rob. Comput.-Integr. Manuf.
,
49
, pp.
240
252
. 10.1016/j.rcim.2017.07.002
22.
Dong
,
X.
,
Axinte
,
D.
,
Palmer
,
D.
,
Cobos
,
S.
,
Raffles
,
M.
,
Rabani
,
A.
, and
Kell
,
J.
,
2017
, “
Development of a Slender Continuum Robotic System for on-Wing Inspection/Repair of Gas Turbine Engines
,”
Rob. Comput.-Integr. Manuf.
,
44
, pp.
218
229
. 10.1016/j.rcim.2016.09.004
23.
Shahir
,
H.
, and
Farrokh
,
J.
,
2016
, “
Model-Based Force Estimation for Intracardiac Catheters
,”
IEEE/ASME Trans. Mechatronics
,
21
(
1
), pp.
154
162
.
24.
Loschak
,
P.
,
Brattain
,
L.
, and
Howe
,
R.
,
2016
, “
Algorithms for Automatically Pointing Ultrasound Imaging Catheters
,”
IEEE/ASME Trans. Mechatronics
,
33
(
1
), pp.
81
91
. 10.1109/tro.2016.2623331
25.
Khoshnam
,
M.
, and
Patel
,
R.
,
2017
, “
Robotics-Assisted Control of Steerable Ablation Catheters Based on the Analysis of Tendon-Sheath Transmission Mechanisms
,”
IEEE/ASME Trans. Mechatronics
,
22
(
3
), pp.
1473
1484
. 10.1109/TMECH.2017.2688320
26.
Conrad
,
B. L.
, and
Zinn
,
M. R.
,
2017
, “
Interleaved Continuum-Rigid Manipulation: An Approach to Increase the Capability of Minimally Invasive Surgical Systems
,”
IEEE/ASME Trans. Mechatronics
,
22
(
1
), pp.
29
40
. 10.1109/TMECH.2016.2608742
27.
Craig
,
J.
,
2005
, “Trajectory Generation,” in
Introduce to Robotics: Mechanics and Control
, 3rd ed.,
Pearson/Prentice-Hall
,
Upper Saddle River, NJ
.
You do not currently have access to this content.