Abstract

Concentric tube robots (CTRs) have a great potential for use in medical applications. Coupled with a follow-the-leader (FTL) deployment, they allow navigation in constrained environments. However, they are subject to instabilities if one makes use of high curvatures for the tubes, long overlapping lengths of their curved sections, or long transmission lengths. One approach to improve their stability is to pattern the tubes of which they are composed by local removals of material along their lengths. Applying patterns on tubes was proved to be of interest for given deployed lengths of a CTR. In this article, we present a method to enlarge the application field of CTRs that deploy in a follow-the-leader manner, by integrating tube patterning in the design process, with a stability criterion. Our method allows the designer to determine a custom pattern geometry to theoretically ensure the stability of CTRs made of any number of constant curvature tubes, for a complete FTL deployment sequence, and while respecting a desired shape during deployment.

References

1.
Burgner-Kahrs
,
J.
,
Rucker
,
D. C.
, and
Choset
,
H.
,
2015
, “
Continuum Robots for Medical Applications: A Survey
,”
IEEE Trans. Rob.
,
31
(
6
), pp.
1261
1280
. 10.1109/TRO.2015.2489500
2.
Webster
,
R. J.
,
Okamura
,
A. M.
, and
Cowan
,
N. J.
,
2006
, “
Toward Active Cannulas: Miniature Snake-Like Surgical Robots
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Beijing
,
Oct. 9–15
, pp.
2857
2863
.
3.
Sears
,
P.
, and
Dupont
,
P.
,
2006
, “
A Steerable Needle Technology Using Curved Concentric Tubes
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Beijing
,
Oct. 9–15
, pp.
2850
2856
.
4.
Choset
,
H.
, and
Henning
,
W.
,
1999
, “
A Follow-the-Leader Approach to Serpentine Robot Motion Planning
,”
J. Aerospace Eng.
,
12
(
2
), pp.
65
73
.
5.
Liljebäck
,
P.
,
Pettersen
,
K.
,
Stavdahl
,
O.
, and
Gravdahl
,
J.
,
2012
, “
A Review on Modelling, Implementation, and Control of Snake Robots
,”
Rob. Auton. Syst.
,
60
(
1
), pp.
29
40
. 10.1016/j.robot.2011.08.010
6.
Tappe
,
S.
,
Pohlmann
,
J.
,
Kotlarski
,
J.
, and
Ortmaier
,
T.
,
2015
, “
Towards a Follow-the-Leader Control for a Binary Actuated Hyper-Redundant Manipulator
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg
,
Sept. 28–Oct. 2
, pp.
3195
3201
.
7.
Henselmans
,
P. W.
,
Gottenbos
,
S.
,
Smit
,
G.
, and
Breedveld
,
P.
,
2017
, “
The Memoslide: An Explorative Study Into a Novel Mechanical Follow-the-leader Mechanism
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
231
(
12
), pp.
1213
1223
. 10.1177/0954411917740388
8.
Neumann
,
M.
, and
Burgner-Kahrs
,
J.
,
2016
, “
Considerations for Follow-the-Leader Motion of Extensible Tendon-Driven Continuum Robots
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm
,
May 16–21
, pp.
917
923
.
9.
Kang
,
B.
,
Kojcev
,
R.
, and
Sinibaldi
,
E.
,
2016
,
The First Interlaced Continuum Robot, Devised to Intrinsically Follow the Leader
, Vol.
11
,
Public Library of Science
,
San Francisco, CA
, pp.
1
16
.
10.
Hawkes
,
E. W.
,
Blumenschein
,
L. H.
,
Greer
,
J. D.
, and
Okamura
,
A. M.
,
2017
,
A Soft Robot That Navigates Its Environment Through Growth
, Vol.
2
,
Science Robotics
,
Washington, DC
.
11.
Bergeles
,
C.
,
Gosline
,
A. H.
,
Vasilyev
,
N. V.
,
Codd
,
P. J.
, and
Dupont
,
P. E.
,
2015
, “
Concentric Tube Robot Design and Optimization Based on Task and Anatomical Constraints
,”
IEEE Trans. Rob.
,
31
(
1
), pp.
67
84
. 10.1109/TRO.2014.2378431
12.
Gilbert
,
H. B.
,
Neimat
,
J.
, and
Webster
,
R. J.
,
2015
, “
Concentric Tube Robots as Steerable Needles: Achieving Follow-the-leader Deployment
,”
IEEE Trans. Rob.
,
31
(
2
), pp.
246
258
. 10.1109/TRO.2015.2394331
13.
Garriga-Casanovas
,
A.
,
2018
, “
Complete Follow-the-Leader Kinematics Using Concentric Tube Robots
,”
Int. J. Rob. Res.
,
37
(
1
), pp.
197
222
. 10.1177/0278364917746222
14.
Girerd
,
C.
,
Rabenorosoa
,
K.
,
Renaud
,
P.
, “Combining Tube Design and Simple Kinematic Strategy for Follow-the-Leader Deployment of Concentric Tube Robots,”
Advances in Robot Kinematics 2016
,
Lenarcic
,
J.
,
Merlet
,
J. P.
, eds.,
Springer International Publishing
,
Grasse, France
, Chapter 10, pp.
266
290
.
15.
Dupont
,
P. E.
,
Lock
,
J.
,
Itkowitz
,
B.
, and
Butler
,
E.
,
2010
, “
Design and Control of Concentric-Tube Robots
,”
IEEE Trans. Rob.
,
26
(
2
), pp.
209
225
. 10.1109/TRO.2009.2035740
16.
Gilbert
,
H. B.
,
Hendrick
,
R. J.
, and
Webster
,
R. J.
,
2016
, “
Elastic Stability of Concentric Tube Robots: A Stability Measure and Design Test
,”
IEEE Trans. Rob.
,
32
(
1
), pp.
20
35
. 10.1109/TRO.2015.2500422
17.
Ha
,
J.
,
Park
,
F. C.
, and
Dupont
,
P. E.
,
2016
, “
Elastic Stability of Concentric Tube Robots Subject to External Loads
,”
IEEE Trans. Biomed. Eng.
,
63
(
6
), pp.
1116
1128
. 10.1109/TBME.2015.2483560
18.
Peyron
,
Q.
,
Rabenorosoa
,
K.
,
Andreff
,
N.
, and
Renaud
,
P.
,
2018
, “
A Numerical Framework for the Stability and Cardinality Analysis of Concentric Tube Robots: Introduction and Application to the Follow-the-Leader Deployment
,”
Mech. Mach. Theory.
,
132
, pp.
176
192
.
19.
Azimian
,
H.
,
Francis
,
P.
,
Looi
,
T.
, and
Drake
,
J.
,
2014
, “
Structurally-Redesigned Concentric-Tube Manipulators With Improved Stability
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Chicago, IL
,
Sept. 14–18
, pp.
2030
2035
.
20.
Kim
,
J.
,
Lee
,
D.
,
Kim
,
K.
,
Kang
,
S.
, and
Cho
,
K.
,
2014
, “
Toward a Solution to the Snapping Problem in a Concentric-Tube Continuum Robot: Grooved Tubes With Anisotropy
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong
,
May 31–June 5
, pp.
5871
5876
.
21.
Lee
,
D.
,
Kim
,
J.
,
Kim
,
J.
,
Baek
,
C.
,
Noh
,
G.
,
Kim
,
D.
,
Kim
,
K.
,
Kang
,
S.
, and
Cho
,
K.
,
2015
, “
Anisotropic Patterning to Reduce Instability of Concentric-Tube Robots
,”
IEEE Trans. Rob.
,
31
(
6
), pp.
1311
1323
. 10.1109/TRO.2015.2481283
22.
Ai Xin Jue Luo
,
K.
,
Looi
,
T.
,
Sabetian
,
S.
, and
Drake
,
J.
,
2018
, “
Designing Concentric Tube Manipulators for Stability Using Topology Optimization
,”
FIEEE International Conference on Robotics and Automation (ICRA)
,
Madrid
,
May
, IEEE, pp.
1764
1769
.
23.
Dupont
,
P. E.
,
Lock
,
J.
, and
Butler
,
E.
,
2009
, “
Torsional Kinematic Model for Concentric Tube Robots
,”
IEEE International Conference on Robotics and Automation
,
Kobe
,
May 12–17
, p.
2964
.
24.
Rucker
,
D. C.
,
Webster
,
R. J., III
,
Chirikjian
,
G. S.
, and
Cowan
,
N. J.
,
2010
, “
Equilibrium Conformations of Concentric-Tube Continuum Robots
,”
Int. J. Robot. Res.
,
29
(
10
), pp.
1263
1280
.
25.
Hendrick
,
R. J.
,
Gilbert
,
H. B.
, and
Webster
,
R. J.
,
2015
, “
Designing Snap-Free Concentric Tube Robots: A Local Bifurcation Approach
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 26–30
, IEEE, pp.
2256
2263
.
26.
W. Mahoney
,
A.
, and
Gilbert
,
H.
,
2016
, “
A Review of Concentric Tube Robots: Modeling, Control, Design, Planning, and Sensing
,”
Encyclopedia of Medical Robotics, Minimally Invasive Surgical Robotics
, pp.
181
202
.
27.
Timoshenko
,
S.
, and
Goodier
,
N. J.
,
1951
,
Theory of Elasticity
,
McGraw-Hill
,
New York
.
28.
Hutchinson
,
J.
,
2001
, “
Shear Coefficients for Timoshenko Beam Theory
,”
J. Appl. Mech.
,
68
(
1
), pp.
87
92
.
29.
York
,
P. A.
,
Swaney
,
P. J.
,
Gilbert
,
H. B.
, and
Webster
,
R. J.
,
2015
, “
A Wrist for Needle-Sized Surgical Robots
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
IEEE
, pp.
1776
1781
.
30.
Devreker
,
A.
,
Rosa
,
B.
,
Desjardins
,
A.
,
Alles
,
E. J.
,
Garcia-Peraza
,
L. C.
,
Maneas
,
E.
,
Stoyanov
,
D.
,
David
,
A. L.
,
Vercauteren
,
T.
,
Deprest
,
J.
,
Ourselin
,
S.
,
Reynaerts
,
D.
, and
Poorten
,
E. V.
,
2015
, “
Fluidic Actuation for Intra-Operative in Situ Imaging
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, pp.
1415
1421
.
31.
Chitalia
,
Y.
,
Wang
,
X.
, and
Desai
,
J. P.
,
2018
, “
Design, Modeling and Control of a 2-Dof Robotic Guidewire
,”
2018 IEEE International Conference on Robotics and Automation (ICRA)
, pp.
32
37
.
You do not currently have access to this content.