Abstract

Soft pneumatic actuators (SPAs) that can twist dominantly provide a promising solution for the design of soft robots due to their flexibility, compliance, and easy fabrication. However, the torsional SPAs also face challenges such as overpressure risk and small torsion angle. To tackle those challenges, a new type of torsional SPAs is designed based on the reversible, cooperative buckling of elastomer, which yields a torsion angle of 1.94 deg/mm and an output torque of 26 N .mm with a secure operation pressure. Moreover, this actuator can achieve a wide range of torsional motion by varying the structure parameters, including the height of actuators and the pitch of helical chambers. The relationship between structure parameters and actuator performance is investigated experimentally, and experimental results show that the torsion angle and output torque increase with the height growing from 20 to 44 mm, while decrease with the pitch rising from 75 to 150 mm. The effect of different materials used for constructing the actuator is also studied numerically, and results show that the output torque can be improved by changing the materials. Additionally, several soft machines constructed by utilizing the actuators as a torsional joint are able to perform different manipulating tasks, such as screwing the light bulb, grasping and rotating objects. The actuator developed in this paper is capable of extending the researches on SPAs and offering an alternative for the actuation of soft machines.

References

1.
Han
,
B.
,
Zhang
,
Y.
,
Chen
,
Q.
, and
Sun
,
H.
,
2018
, “
Carbon-Based Photothermal Actuators
,”
Adv. Funct. Mater.
,
28
(
40
), p.
1802235
. 10.1002/adfm.201802235
2.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), p.
467
. 10.1038/nature14543
3.
Wehner
,
M.
,
Truby
,
R. L.
,
Fitzgerald
,
D. J.
,
Mosadegh
,
B.
,
Whitesides
,
G. M.
,
Lewis
J. A.
, and
Wood
,
R. J.
,
2016
, “
An Integrated Design and Fabrication Strategy for Entirely Soft, Autonomous Robots
,”
Nature
,
536
(
7617
), p.
451
. 10.1038/nature19100
4.
Shepherd
,
R. F.
,
Stokes
,
A. A.
,
Nunes
,
R. M. D.
, and
Whitesides
,
G. M.
,
2013
, “
Soft Machines That are Resistant to Puncture and That Self Seal
,”
Adv. Mater.
,
25
(
46
), pp.
6709
6713
. 10.1002/adma.201303175
5.
Martinez
,
R. V.
,
Branch
,
J. L.
,
Fish
,
C. R.
,
Jin
,
L.
,
Shepherd
,
R. F.
,
Nunes
,
R. M. D.
,
Suo
,
Z.
, and
Whitesides
,
G. M.
,
2013
, “
Robotic Tentacles With Three-Dimensional Mobility Based on Flexible Elastomers
,”
Adv. Mater.
,
25
(
2
), pp.
205
212
. 10.1002/adma.201203002
6.
Uppalapati
,
N. K.
, and
Krishnan
,
G.
,
2018
, “
Towards Pneumatic Spiral Grippers: Modeling and Design Considerations
,”
Soft Robot.
,
5
(
6
), pp.
695
709
. 10.1089/soro.2017.0144
7.
Belding
,
L.
,
Baytekin
,
B.
,
Baytekin
,
H. T.
,
Rothemund
,
P.
,
Verma
,
M. S.
,
Nemiroski
,
A.
,
Sameoto
,
D.
,
Grzybowski
,
B. A.
, and
Whitesides
,
G. M.
,
2018
, “
Slit Tubes for Semisoft Pneumatic Actuators
,”
Adv. Mater.
,
30
(
9
), p.
1704446
. 10.1002/adma.201704446
8.
Li
,
H.
,
Yao
,
J.
,
Zhou
,
P.
,
Chen
,
X.
,
Xu
,
Y.
, and
Zhao
,
Y.
,
2019
, “
High-Load Soft Grippers Based on Bionic Winding Effect
,”
Soft Robot.
,
2
(
6
), pp.
276
288
. 10.1089/soro.2018.0024
9.
Lotfiani
,
A.
,
Zhao
,
H.
,
Shao
,
Z.
, and
Yi
,
X.
,
2019
, “
Torsional Stiffness Improvement of a Soft Pneumatic Finger Using Embedded Skeleton
,”
ASME J. Mech. Robot.
,
12
(
1
), p.
011006
. 10.1115/1.4045227
10.
She
,
Y.
,
Li
,
C.
,
Cleary
,
J.
, and
Su
,
H.-J.
,
2015
, “
Design and Fabrication of a Soft Robotic Hand With Embedded Actuators and Sensors
,”
ASME J. Mech. Robot.
,
7
(
2
), p.
021007
. 10.1115/1.4029497
11.
Roche
,
E. T.
,
Wohlfarth
,
R.
,
Overvelde
,
J. T. B.
,
Vasilyev
,
N. V.
,
Pigula
,
F. A.
,
Mooney
,
D. J.
,
Bertoldi
,
K.
, and
Walsh
,
C. J.
,
2014
, “
A Bioinspired Soft Actuated Material
,”
Adv. Mater.
,
26
(
8
), pp.
1200
1206
. 10.1002/adma.201304018
12.
Liang
,
X.
,
Sun
,
Y.
, and
Ren
,
H.
,
2017
, “
A Flexible Fabrication Approach Toward the Shape Engineering of Microscale Soft Pneumatic Actuators
,”
IEEE Robot. Automation Lett.
,
2
(
1
), pp.
165
170
. 10.1109/LRA.2016.2585298
13.
Tolley
,
M. T.
,
Shepherd
,
R. F.
,
Mosadegh
,
B.
,
Galloway
,
K. C.
,
Wehner
,
M.
,
Karpelson
,
M.
,
Wood
,
R. J.
,
Whitesides
,
G. M.
,
2014
, “
A Resilient, Untethered Soft Robot
,”
Soft Robot.
,
1
(
3
), pp.
213
223
. 10.1089/soro.2014.0008
14.
Ranzani
,
T.
,
Russo
,
S.
,
Bartlett
,
N. W.
,
Wehner
,
M.
, and
Wood
,
R. J.
,
2018
, “
Increasing the Dimensionality of Soft Microstructures Through Injection-Induced Self-Folding
,”
Adv. Mater.
,
30
(
38
), p.
1802739
. 10.1002/adma.201802739
15.
Gu
,
G.
,
Zou
,
J.
,
Zhao
,
R.
,
Zhao
,
X.
, and
Zhu
,
X.
,
2018
, “
Soft Wall-Climbing Robots
,”
Sci. Robot.
,
3
(
25
), p.
t2874
. 10.1126/scirobotics.aat2874
16.
Marchese
,
A. D.
,
Onal
,
C. D.
, and
Rus
,
D.
,
2014
, “
Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators
,”
Soft Robot.
,
1
(
1
), pp.
75
87
. 10.1089/soro.2013.0009
17.
Wang
,
Y.
,
Yang
,
X.
,
Chen
,
Y.
,
Wainwright
,
D. K.
,
Kenaley
,
C. P.
,
Gong
,
Z.
,
Liu
,
Z.
,
Liu
,
H.
,
Guan
,
J.
,
Wang
,
T.
,
Weaver
,
J. C.
,
Wood
,
R. J.
, and
Wen
,
L.
,
2017
, “
A Biorobotic Adhesive Disc for Underwater Hitchhiking Inspired by the Remora Suckerfish
,”
Sci. Robot.
,
2
(
10
), p.
n8072
. 10.1126/scirobotics.aan8072
18.
Martinez
,
R. V.
,
Glavan
,
A. C.
,
Keplinger
,
C.
,
Oyetibo
,
A. I.
, and
Whitesides
,
G. M.
,
2014
, “
Soft Actuators and Robots That Are Resistant to Mechanical Damage
,”
Adv. Funct. Mater.
,
24
(
20
), pp.
3003
3010
. 10.1002/adfm.201303676
19.
Nguyen
,
C. T.
,
Phung
,
H.
,
Hoang
,
P. T.
,
Nguyen
,
T. D.
,
Jung
,
H.
, and
Choi
,
H. R.
,
2018
, “
Development of an Insect-Inspired Hexapod Robot Actuated by Soft Actuators
,”
ASME J. Mech. Robot.
,
10
(
6
), p.
061016
. 10.1115/1.4041258
20.
Gong
,
X.
,
Yang
,
K.
,
Xie
,
J.
,
Wang
,
Y.
,
Kulkarni
,
P.
,
Hobbs
,
A. S.
, and
Mazzeo
,
A. D.
,
2016
, “
Rotary Actuators Based on Pneumatically Driven Elastomeric Structures
,”
Adv. Mater.
,
28
(
34
), pp.
7533
7538
. 10.1002/adma.201600660
21.
Yan
,
J.
,
Zhang
,
X.
,
Xu
,
B.
, and
Zhao
,
J.
,
2018
, “
A New Spiral-Type Inflatable Pure Torsional Soft Actuator
,”
Soft Robot.
,
5
(
5
), pp.
527
540
. 10.1089/soro.2017.0040
22.
Shen
,
H.
,
2016
, “
Meet the Soft, Cuddly Robots of the Future
,”
Nature
,
530
(
7588
), p.
24
. 10.1038/530024a
23.
Connolly
,
F.
,
Polygerinos
,
P.
,
Walsh
,
C. J.
, and
Bertoldi
,
K.
,
2015
, “
Mechanical Programming of Soft Actuators by Varying Fiber Angle
,”
Soft Robot.
,
2
(
1
), pp.
26
32
. 10.1089/soro.2015.0001
24.
Lazarus
,
A.
, and
Reis
,
P. M.
,
2015
, “
Soft Actuation of Structured Cylinders Through Auxetic Behavior
,”
Adv. Eng. Mater.
,
17
(
6
), pp.
815
820
. 10.1002/adem.201400433
25.
Morin
,
S. A.
,
Shevchenko
,
Y.
,
Lessing
,
J.
,
Kwok
,
S. W.
,
Shepherd
,
R. F.
,
Stokes
,
A. A.
, and
Whitesides
,
G. M.
,
2014
, “
Using “Click-E-Bricks” to Make 3D Elastomeric Structures
,”
Adv. Mater.
,
26
(
34
), pp.
5991
5999
. 10.1002/adma.201401642
26.
Gorissen
,
B.
,
Chishiro
,
T.
,
Shimomura
,
S.
,
Reynaerts
,
D.
,
De Volder
,
M.
, and
Konishi
,
S.
,
2014
, “
Flexible Pneumatic Twisting Actuators and Their Application to Tilting Micromirrors
,”
Sens. Actuators A: Phys.
,
216
, pp.
426
431
. 10.1016/j.sna.2014.01.015
27.
Johnson
,
C. G.
,
Jain
,
U.
,
Hazel
,
A. L.
,
Pihler-Puzovic
,
D.
, and
Mullin
,
T.
,
2017
, “
On the Buckling of an Elastic Holey Column
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
473
(
2207
), p.
20170477
. 10.1098/rspa.2017.0477
28.
Bertoldi
,
K.
,
Boyce
,
M. C.
,
Deschanel
,
S.
,
Prange
,
S. M.
, and
Mullin
,
T.
,
2008
, “
Mechanics of Deformation-Triggered Pattern Transformations and Superelastic Behavior in Periodic Elastomeric Structures
,”
J. Mech. Phys. Solids
,
56
(
8
), pp.
2642
2668
. 10.1016/j.jmps.2008.03.006
29.
Yang
,
D.
,
Mosadegh
,
B.
,
Ainla
,
A.
,
Lee
,
B.
,
Khashai
,
F.
,
Suo
,
Z.
,
Bertoldi
,
K.
, and
Whitesides
,
G. M.
,
2015
, “
Buckling of Elastomeric Beams Enables Actuation of Soft Machines
,”
Adv. Mater.
,
27
(
41
), pp.
6323
6327
. 10.1002/adma.201503188
30.
Yang
,
D.
,
Verma
,
M. S.
,
So
,
J.-H.
,
Mosadegh
,
B.
,
Keplinger
,
C.
,
Lee
,
B.
,
Khashai
,
F.
,
Lossner
,
E.
,
Suo
,
Z.
, and
Whitesides
,
G. M.
,
2016
, “
Buckling Pneumatic Linear Actuators Inspired by Muscle
,”
Adv. Mater. Technol.
,
1
(
3
), p.
1600055
. 10.1002/admt.201600055
31.
Yang
,
D.
,
Verma
,
M. S.
,
Lossner
,
E.
,
Stothers
,
D.
, and
Whitesides
,
G. M.
,
2017
, “
Negative-Pressure Soft Linear Actuator With a Mechanical Advantage
,”
Adv. Mater. Technol.
,
2
(
1
), p.
1600164
. 10.1002/admt.201600164
32.
Wang
,
G.
,
Li
,
M.
, and
Zhou
,
J.
,
2019
, “
Modeling Soft Machines Driven by Buckling Actuators
,”
Int. J. Mech. Sci.
,
157–158
, pp.
662
667
. 10.1016/j.ijmecsci.2019.05.014
33.
Wang
,
Y.
,
Yang
,
R.
,
Shi
,
Z.
,
Zhang
,
L.
,
Shi
,
D.
, et al
,
2011
, “
Super-Elastic Graphene Ripples for Flexible Strain Sensors
,”
ACS Nano
,
5
(
5
), pp.
3645
3650
. 10.1021/nn103523t
34.
Rogers
,
J. A.
,
Someya
,
T.
, and
Huang
,
Y.
,
2010
, “
Materials and Mechanics for Stretchable Electronics
,”
Science
,
327
(
5973
), pp.
1603
1607
. 10.1126/science.1182383
35.
Overvelde
,
J. T. B.
,
Kloek
,
T.
,
D’haen
,
J. J. A.
, and
Bertoldi
,
K.
,
2015
, “
Amplifying the Response of Soft Actuators by Harnessing Snap-Through Instabilities
,”
Proc. Natl. Acad. Sci. U. S. A.
,
112
(
35
), pp.
10863
10868
. 10.1073/pnas.1504947112
36.
Rafsanjani
,
A.
,
Akbarzadeh
,
A.
, and
Pasini
,
D.
,
2015
, “
Snapping Mechanical Metamaterials Under Tension
,”
Adv. Mater.
,
27
(
39
), pp.
5931
5935
. 10.1002/adma.201502809
37.
Casadei
,
F.
,
Shan
,
S.
,
Weaver
,
J. C.
,
Bertoldi
,
K.
, and
Wang
,
P.
,
2014
, “
Harnessing Buckling to Design Tunable Locally Resonant Acoustic Metamaterials
,”
Phys. Rev. Lett.
,
113
(
1
), p.
14301
. 10.1103/PhysRevLett.113.014301
38.
Coulais
,
C.
,
van Hecke
,
M.
, and
Florijn
,
B.
,
2014
, “
Programmable Mechanical Metamaterials
,”
Phys. Rev. Lett.
,
113
(
17
), p.
175503
. 10.1103/PhysRevLett.113.175503
39.
Shim
,
J.
,
Perdigou
,
C.
,
Chen
,
E. R.
,
Bertoldi
,
K.
, and
Reis
,
P. M.
,
2012
, “
Buckling-Induced Encapsulation of Structured Elastic Shells Under Pressure
,”
Proc. Natl. Acad. Sci. U. S. A.
,
109
(
16
), pp.
5978
5983
. 10.1073/pnas.1115674109
40.
Mullin
,
T.
,
Deschanel
,
S.
,
Bertoldi
,
K.
, and
Boyce
,
M. C.
,
2007
, “
Pattern Transformation Triggered by Deformation
,”
Phys. Rev. Lett.
,
99
(
8
), p.
84301
. 10.1103/PhysRevLett.99.084301
41.
Gerbode
,
S. J.
,
Puzey
,
J. R.
,
McCormick
,
A. G.
, and
Mahadevan
,
L.
,
2012
, “
How the Cucumber Tendril Coils and Overwinds
,”
Science
,
337
(
6098
), pp.
1087
1091
. 10.1126/science.1223304
42.
Cheng
,
Y.
,
Wang
,
R.
,
Chan
,
K. H.
,
Lu
,
X.
,
Sun
,
J.
, and
Ho
,
G. W.
,
2018
, “
A Biomimetic Conductive Tendril for Ultrastretchable and Integratable Electronics, Muscles, and Sensors
,”
ACS Nano
,
12
(
4
), pp.
3898
3907
. 10.1021/acsnano.8b01372
43.
Wang
,
T.
,
Ge
,
L.
, and
Gu
,
G.
,
2018
, “
Programmable Design of Soft Pneu-Net Actuators With Oblique Chambers can Generate Coupled Bending and Twisting Motions
,”
Sens. Actuators, A
,
271
, pp.
131
138
. 10.1016/j.sna.2018.01.018
44.
Xu
,
Q.
, and
Liu
,
J.
,
2018
, “
An Improved Dynamic Model for a Silicone Material Beam With Large Deformation
,”
Acta Mech. Sinica-Prc
,
34
(
4
), pp.
744
753
. 10.1007/s10409-018-0759-y
45.
Shintake
,
J.
,
Cacucciolo
,
V.
,
Floreano
,
D.
, and
Shea
,
H.
,
2018
, “
Soft Robotic Grippers
,”
Adv. Mater.
,
30
(
29
), p.
1707035
. 10.1002/adma.201707035
46.
Polygerinos
,
P.
,
Wang
,
Z.
,
Overvelde
,
J. T. B.
,
Galloway
,
K. C.
,
Wood
,
R. J.
,
Bertoldi
,
K.
, and
Walsh
,
C. J.
,
2015
, “
Modeling of Soft Fiber-Reinforced Bending Actuators
,”
IEEE Trans. Robot.
,
31
(
3
), pp.
778
789
.
You do not currently have access to this content.