Abstract

This paper proposes a method for optimizing rectilinear tasks on a 3 degrees-of-freedom (DoF) modular serial metamorphic manipulator. The overall experimental process was designed in order for theoretical assumptions and previous experimental results, regarding the characteristics of a class of reconfigurable manipulators to be verified. The optimization procedure undergoes two stages. In each stage, the tasks are initially simulated and the optimal solutions obtained are afterward evaluated in the manipulator. Optimal task placement in the configuration space of the reference anatomy is concerned in the first optimization stage. Two different kinematic manipulability measures are utilized to form the objective function of the genetic algorithm (GA) used. Determination of the optimal anatomy for each task execution is concerned in the second stage. All feasible anatomies are exhaustively evaluated, and the anatomy with minimum execution time achieved in simulation is considered as optimal. The simulated tasks are executed for the reference and the optimal anatomy extracted. Overall task execution time reduction is measured. For tasks executed, Tool Center Point (TCP) position and velocity are obtained from navigation equations using measurements from an inertial measurement unit (IMU) sensor. In order to obtain more accurate solutions from position and velocity equations, a Kalman filter (KF) algorithm is implemented. Finally, conclusions are made based on the results of each task execution. Overall the metamorphic manipulator can achieve higher kinematic performance and minimize task execution time for the optimal anatomy calculated. Optimal task placement for the reference anatomy also reduces the task execution time.

References

1.
World Economic Forum
,
2017
,
The Next Economic Growth Engine: Scaling Fourth Industrial RevolutionTechnologies in Production
[
White paper
], http://www3.weforum.org/docs/WEF_Technology_and_Innovation_The_Next_Economic_Growth_Engine.pdf
3.
Paredis
,
C. J.
,
Brown
,
H. B.
, and
Khosla
,
P. K.
,
1997
, “
A Rapidly Deployable Manipulator System
,”
Rob. Autom. Syst.
,
21
(
3
), pp.
289
304
. 10.1016/S0921-8890(97)00081-X
4.
Fukuda
,
T.
, and
Nakagawa
,
S.
,
1988
, “
Dynamically Reconfigurable Robotic System
,”
Proceedings. 1988 IEEE International Conference on Robotics and Automation
,
Philadelphia, PA
,
Apr. 24–29
, pp.
1581
1586
.
5.
Matsumaru
,
T.
,
1995
, “
Design and Control of the Modular Robot System: TOMMS
,”
Proceedings of 1995 IEEE International Conference on Robotics and Automation
,
Nagoya, Aichi, Japan
,
May 21–27
, pp.
2125
2131
.
6.
Valsamos
,
C.
,
Moulianitis
,
V. C.
, and
Aspragathos
,
N.
,
2012
,
Advances in Reconfigurable Mechanisms and Robots I
,
J. S.
Dai
,
M.
Zoppi
, and
X.
Kong
, eds.,
Springer Verlag
,
London
, pp.
3
11
.
7.
Chirikjian
,
G.
, and
Pamecha
,
A.
,
1996
, “
Bounds for Self-Reconfiguration of Metamorphic Robots
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Minneapolis, MN
,
Apr. 22–28
, Vol.
2
, pp.
1452
1457
.
8.
Valsamos
,
C.
,
Moulianitis
,
V.
, and
Aspragathos
,
N.
,
2016
, “
Experimental Verification of the Advantages of a Modular Open Chain Metamorphic Manipulator
,”
Proceedings of ISR 2016: 47st International Symposium on Robotics
,
Munich, Germany
,
June
, VDE, pp.
1
7
.
9.
Kereluk
,
J. A.
, and
Reza Emami
,
M.
,
2015
, “
A new Modular, Autonomously Reconfigurable Manipulator Platform
,”
Int. J. Adv. Rob. Syst.
,
12
(
6
), p.
71
. 10.5772/60486
10.
Hong
,
S.
,
Choi
,
D.
,
Kang
,
S.
,
Lee
,
H.
, and
Lee
,
W.
,
2016
, “
Design of Manually Reconfigurable Modular Manipulator With Three Revolute Joints and Links
,”
2016 IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 21–26
,
IEEE
, pp.
5210
5215
.
11.
Vittor
,
T.
,
Willgoss
,
R.
, and
Iqbal
,
J.
,
2007
, “
Proof of Concept of a Hyper Redundant Reconfigurable Modular Manipulator System
,”
Proc. Australian Conference on Robotics and Automation. Control Systems
,
Brisbane, Australia
,
Dec. 10–12
, pp.
1
9
.
12.
US Department of Energy (DOE)
,
2002
,
Modular Manipulator for Robotic Applications, DOE/EM-0641
.
13.
Valsamos
,
C.
,
Moulianitis
,
V.
, and
Aspragathos
,
N.
,
2014
, “
Kinematic Synthesis of Structures for Metamorphic Serial Manipulators
,”
ASME J. Mech. Rob.
,
6
(
4
), p.
041005
. 10.1115/1.4027741
14.
Guan
,
Y.
,
Jiang
,
L.
,
Zhang
,
X.
,
Qiu
,
J.
, and
Zhou
,
X.
,
2009
, “
1-Dof Robotic Joint Modules and Their Applications in new Robotic Systems
,”
ROBIO 2008. IEEE International Conference on Robotics and Biomimetics, 2008
,
Bangkok, Thailand
,
Feb. 22–25
, pp.
1905
1910
.
15.
Negrello
,
F.
,
Garabini
,
M.
,
Catalano
,
M. G.
,
Malzahn
,
J.
,
Caldwell
,
D. G.
,
Bicchi
,
A.
, and
Tsagarakis
,
N. G.
,
2015
, “
A Modular Compliant Actuator for Emerging High Performance and Fall-Resilient Humanoids
,”
2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids)
,
Seoul, South Korea
,
Nov. 3–5
, pp.
414
420
.
16.
Schuler
,
S.
,
Kaufmann
,
V.
,
Houghton
,
P.
, and
Székely
,
G.S.
,
2006
, “
Design and Development of a Joint for the Dexterous Robot Arm
,”
Ninth ESA Workshop on Advanced Space Technologies for Robotics and Automation
,
Noordwijk, The Netherlands
,
Nov.
, pp.
28
30
.
17.
Coppola
,
G.
,
Zhang
,
D.
, and
Liu
,
K.
,
2014
, “
A 6-DOF Reconfigurable Hybrid Parallel Manipulator
,”
Rob. Comput. Integr. Manuf.
,
30
(
2
), pp.
99
106
. 10.1016/j.rcim.2013.09.011
18.
Plitea
,
N.
,
Lese
,
D.
,
Pisla
,
D.
, and
Vaida
,
C.
,
2013
, “
Structural Design and Kinematics of a New Parallel Reconfigurable Robot
,”
Rob. Comput. Integr. Manuf.
,
29
(
1
), pp.
219
235
. 10.1016/j.rcim.2012.06.001
19.
Wei
,
G.
,
Dai
,
J. S.
,
Wang
,
S.
, and
Luo
,
H.
,
2011
, “
Kinematic Analysis and Prototype of a Metamorphic Anthropomorphic Hand With a Reconfigurable Palm
,”
Int. J. Humanoid Rob.
,
8
(
03
), pp.
459
479
. 10.1142/S0219843611002538
20.
Gan
,
D.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2016
, “
Unified Kinematics and Optimal Design of a 3rRPS Metamorphic Parallel Mechanism With a Reconfigurable Revolute Joint
,”
Mech. Mach. Theory
,
96
, pp.
239
254
. 10.1016/j.mechmachtheory.2015.08.005
21.
Palpacelli
,
M. C.
,
Carbonari
,
L.
,
Palmieri
,
G.
, and
Callegari
,
M.
,
2019
, “
Mechanical Design and Prototype of a Reconfigurable Actuated Universal Joint
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
New York
,
August
,
American Society of Mechanical Engineers
,
New York
, Vol.
59292
, p.
V009T12A042
.
22.
Ma
,
X.
,
Zhang
,
K.
, and
Dai
,
J. S.
,
2018
, “
Novel Spherical-Planar and Bennett-Spherical 6R Metamorphic Linkages With Reconfigurable Motion Branches
,”
Mech. Mach. Theory
,
128
, pp.
628
647
. 10.1016/j.mechmachtheory.2018.05.001
23.
Dai
,
J. S.
, and
Jones
,
J. R.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
. 10.1115/1.2829470
24.
Dai
,
J. S.
, and
Jones
,
J. R.
,
2005
, “
Matrix Representation of Topological Configuration Transformation of Metamorphic Mechanisms
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
837
840
. 10.1115/1.1866159
25.
Nurahmi
,
L.
,
Caro
,
S.
,
Wenger
,
P.
,
Schadlbauer
,
J.
, and
Husty
,
M.
,
2016
, “
Reconfiguration Analysis of a 4-RUU Parallel Manipulator
,”
Mech. Mach. Theory
,
96
, pp.
269
289
. 10.1016/j.mechmachtheory.2015.09.004
26.
Gan
,
D.
,
Dai
,
J. S.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2015
, “
Forward Kinematics Solution Distribution and Analytic Singularity-Free Workspace of Linear-Actuated Symmetrical Spherical Parallel Manipulators
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041007
. 10.1115/1.4029808
27.
Gan
,
D.
,
Dai
,
J. S.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2013
, “
Unified Kinematics and Singularity Analysis of a Metamorphic Parallel Mechanism With Bifurcated Motion
,”
ASME J. Mech. Rob.
,
5
(
3
), p.
031004
. 10.1115/1.4024292
28.
Gallardo-Alvarado
,
J.
,
2019
, “
An Application of the Newton-Homotopy Continuation Method for Solving the Forward Kinematic Problem of the 3-RRS Parallel Manipulator
,”
Math. Probl. Eng.
,
2019
. 10.1155/2019/3123808
29.
Ma
,
K.
,
Ma
,
H.
, and
Tian
,
H.
,
2019
, “
Kinematic Analysis of a Novel 2-PrRS-PR (P) S Metamorphic Parallel Mechanism
,”
Adv. Mech. Eng.
,
11
(
11
), p.
1687814019889776
. 10.1177/1687814019889776
30.
Zhao
,
C.
,
Guo
,
H.
,
Liu
,
R.
,
Deng
,
Z.
, and
Li
,
B.
,
2018
, “
Design and Kinematic Analysis of a 3RRlS Metamorphic Parallel Mechanism for Large-Scale Reconfigurable Space Multifingered Hand
,”
ASME J. Mech. Rob.
,
10
(
4
), p.
041012
. 10.1115/1.4040356
31.
Chen
,
I. M.
, and
Yang
,
G.
,
1998
, “
Inverse Kinematics for Modular Reconfigurable Robots
,”
Proceedings. 1998 IEEE International Conference on Robotics and Automation, 1998
,
Leuven, Belgium
,
May
, pp.
1647
1652
.
32.
Tabandeh
,
S.
,
Melek
,
W. W.
, and
Clark
,
C. M.
,
2010
, “
An Adaptive Niching Genetic Algorithm Approach for Generating Multiple Solutions of Serial Manipulator Inverse Kinematics With Applications to Modular Robots
,”
Robotica
,
28
(
4
), pp.
493
507
. 10.1017/S0263574709005803
33.
Moulianitis
,
V. C.
,
Kokkinopoulos
,
E. M.
, and
Aspragathos
,
N. A.
,
2016
,
Robotics and Mechatronics
,
S.
Zeghloul
,
M. A.
Laribi
, and
J.-P.
Gazeau
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
273
281
.
34.
Moulianitis
,
V.
,
Vogiatzief
,
D.
, and
Aspragathos
,
N.
,
2017
,
New Trends in Mechanism and Machine Science
,
P.
Wenger
, and
P.
Flores
, eds.,
Springer
,
Cham
, pp.
493
502
.
35.
Raghavan
,
M.
, and
Roth
,
B.
,
1990
, “
Kinematic Analysis of the 6R Manipulator of General Geometry
,”
International Symposium on Robotics Research
, pp.
314
320
.
36.
Manocha
,
D.
, and
Canny
,
J. F.
,
1992
, “
Real Time Inverse Kinematics for General 6R Manipulators
,”
ICRA
,
Nice, France
,
May
, pp.
383
389
.
37.
Nielsen
,
J.
, and
Roth
,
B.
,
1999
, “
On the Kinematic Analysis of Robotic Mechanisms
,”
Int. J. Rob. Res.
,
18
(
12
), pp.
1147
1160
. 10.1177/02783649922067771
38.
Mavroidis
,
C.
, and
Roth
,
B.
,
1994
, “
Structural Parameters Which Reduce the Number of Manipulator Configurations
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
3
10
. 10.1115/1.2919373
39.
Valsamos
,
C.
,
2017
,
Methodology for the Optimal Design of Metamorphic Robotic Manipulator, Ph.D. dissertation, University of Patras, Patrai, Greece
.
40.
Paredis
,
C. J.
, and
Khosla
,
P. K.
,
1993
, “
Kinematic Design of Serial Link Manipulators From Task Specifications
,”
Int. J. Rob. Res.
,
12
(
3
), pp.
274
287
. 10.1177/027836499301200306
41.
Patel
,
S.
, and
Sobh
,
T.
,
2014
, “
Goal Directed Design of Serial Robotic Manipulators
,”
2014 Zone 1 Conference of the American Society for Engineering Education (ASEE Zone 1)
,
Bridgeport, CT
,
April
, IEEE, pp.
1
6
.
42.
Moulianitis
,
V. C.
,
Aspragathos
,
N. A.
,
Synodinos
,
A. I.
, and
Valsamos
,
C. D.
,
2014
, “
Task-Based Optimal Design of Serial Metamorphic
,”
ICRA 2014 Wοrkshop “Task Based Optimal Design of Robots”
,
Hong Kong, China
,
May 31–June 7
.
43.
Valsamos
,
C.
,
Moulianitis
,
V.
, and
Aspragathos
,
N.
,
2012
, “
Index Based Optimal Anatomy of a Metamorphic Manipulator for a Given Task
,”
Rob. Comput. Integr. Manuf.
,
28
(
4
), pp.
517
529
. 10.1016/j.rcim.2011.11.006
44.
Chen
,
I. M.
, and
Burdick
,
J. W.
,
1995
, “
Determining Task Optimal Modular Robot Assembly Configurations
,”
Proceedings., 1995 IEEE International Conference on Robotics and Automation, 1995
,
Nagoya, Aichi, Japan
,
May
,
IEEE
, Vol.
1
, pp.
132
137
.
45.
Chocron
,
O.
,
2008
, “
Evolutionary Design of Modular Robotic Arms
,”
Robotica
,
26
(
3
), pp.
323
330
. 10.1017/S0263574707003931
46.
Tabandeh
,
S.
,
Melek
,
W.
,
Biglarbegian
,
M.
,
Won
,
S. H. P.
, and
Clark
,
C.
,
2016
, “
A Memetic Algorithm Approach for Solving the Task-Based Configuration Optimization Problem in Serial Modular and Reconfigurable Robots
,”
Robotica
,
34
(
9
), pp.
1979
2008
. 10.1017/S0263574714002690
47.
Mohamed
,
R. P.
,
Xi
,
F. J.
, and
Lin
,
Y.
,
2015
, “
A Combinatorial Search Method for the Quasi-Static Payload Capacity of Serial Modular Reconfigurable Robots
,”
Mech. Mach. Theory
,
92
, pp.
240
256
. 10.1016/j.mechmachtheory.2015.05.016
48.
Mohamed
,
R. P.
,
Xi
,
F. J.
, and
Chen
,
T.
,
2017
, “
A Pose-Based Structural Dynamic Model Updating Method for Serial Modular Robots
,”
Mech. Syst. Sig. Process.
,
85
, pp.
530
555
. 10.1016/j.ymssp.2016.08.026
49.
Whitney
,
D. E.
,
1972
, “
The Mathematics of Coordinated Control of Prosthetic Arms and Manipulators
,”
J. Dyn. Syst. Meas. Control
,
94
(
4
), pp.
303
309
. 10.1115/1.3426611
50.
Valsamos
,
H.
,
Moulianitis
,
V.
, and
Aspragathos
,
N.
,
2009
, “
A Generalized Method for Solving the Kinematics of 3 DoF Reconfigurable Manipulators
,”
I* PROMS 2009 Virtual Conference
,
Virtual
,
July 6–17
.
51.
Murray
,
R. M.
,
2017
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
,
NW Boca Raton, FL
.
52.
Bunch
,
J. R.
, and
Hopcroft
,
J. E.
,
1974
, “
Triangular Factorization and Inversion by Fast Matrix Multiplication
,”
Math. Comput.
,
28
(
125
), pp.
231
236
. 10.1090/S0025-5718-1974-0331751-8
53.
Yoshikawa
,
T.
,
1985
, “
Manipulability of Robotic Mechanisms
,”
Int. J. Rob. Res.
,
4
(
2
), pp.
3
9
. 10.1177/027836498500400201
54.
Dubey
,
R.
, and
Luh
,
J. Y.
,
1988
, “
Redundant Robot Control Using Task Based Performance Measures
,”
J. Rob. Syst.
,
5
(
5
), pp.
409
432
. 10.1002/rob.4620050502
55.
Patel
,
S.
, and
Sobh
,
T.
,
2015
, “
Manipulator Performance Measures-a Comprehensive Literature Survey
,”
J. Intell. Rob. Syst.
,
77
(
3–4
), pp.
547
570
. 10.1007/s10846-014-0024-y
56.
Nektarios
,
A.
, and
Aspragathos
,
N. A.
,
2010
, “
Optimal Location of a General Position and Orientation end-Effector's Path Relative to Manipulator's Base, Considering Velocity Performance
,”
Rob. Comput. Integr. Manuf.
,
26
(
2
), pp.
162
173
. 10.1016/j.rcim.2009.07.003
57.
Biagiotti
,
L.
, and
Melchiorri
,
C.
,
2008
,
Trajectory Planning for Automatic Machines and Robots
,
Springer Verlag
,
Berlin Heidelberg
.
58.
Groves
,
P. D.
,
2013
,
Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems
,
Artech House
,
Norwood, MA
.
59.
Sola
,
J.
,
2012
, “
Quaterbnion Kinematics for the Error-State KF
,”
Laboratoire dAnalyse et dArchitecture des Systemes-Centre national de la Recherche Scientifique (LAAS-CNRS)
,
Toulouse, France
,
Technical Report, Report No. hal-01122406v2
.
You do not currently have access to this content.