Abstract

Cable-driven parallel robots are well suited for applications that require a very large workspace. Thanks to their lightweight moving parts, they can achieve high dynamics while remaining pretty safe for nearby human workers. Furthermore, their size depends only on the length of the cables; thus, their scale is almost totally decoupled from their cost. However, due to the cables, the stiffness is very low with respect to rigid link robots, inducing slowly damped oscillations of the end effector. Previous works have shown that those vibrations can be effectively damped by the winch actuators thanks to active vibration damping techniques. In this paper, a gain scheduling approach is proposed based on a linearized model of the robot dynamics. This model is projected in the modal space yielding six decoupled transfer functions for six degrees-of-freedom (DoFs) of a cable-driven parallel robot using thin cables. The stability of the proposed control law is analyzed for a static and a moving end effector. The proposed control algorithm is validated experimentally on an eight-cable suspended robot prototype.

References

1.
Thompson
,
R.
, and
Blackstone
,
M.
,
2005
, “
Three-Dimensional Moving Camera Assembly With an Informational Cover Housing
,” U.S. Patent No. 6,873,355.
2.
Merlet
,
J.-p.
, and
Daney
,
D.
,
2010
, “
A Portable, Modular Parallel Wire Crane for Rescue Operations
,”
2010 IEEE International Conference on Robotics and Automation
,
Anchorage, AK
,
May 3–7
, pp.
2834
2839
.
3.
Gouttefarde
,
M.
,
Collard
,
J.-F.
,
Riehl
,
N.
, and
Baradat
,
C.
,
2015
, “
Geometry Selection of a Redundantly Actuated Cable-Suspended Parallel Robot
,”
IEEE Trans. Rob.
,
31
(
2
), pp.
501
510
. 10.1109/TRO.2015.2400253
4.
Gouttefarde
,
M.
,
Collard
,
J.-F.
,
Riehl
,
N.
, and
Baradat
,
C.
,
2012
, “
Simplified Static Analysis of Large-Dimension Parallel Cable-Driven Robots
,”
2012 IEEE International Conference on Robotics and Automation
,
Saint Paul, MN
,
May 14–18
, pp.
2299
2305
.
5.
Kawamura
,
S.
,
Choe
,
W.
,
Tanaka
,
S.
, and
Pandian
,
S.
,
1995
, “
Development of an Ultrahigh Speed Robot FALCON Using Wire Drive System
,”
Proceedings of 1995 IEEE International Conference on Robotics and Automation
, Vol.
1
,
Nagoya, Japan
,
May 21–27
, pp.
215
220
.
6.
Weber
,
X.
,
Cuvillon
,
L.
, and
Gangloff
,
J.
,
2014
, “
Active Vibration Canceling of a Cable-Driven Parallel Robot Using Reaction Wheels
,”
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Chicago, IL
,
Sept. 14–18
, pp.
1724
1729
.
7.
de Rijk
,
R.
,
Rushton
,
M.
, and
Khajepour
,
A.
,
2018
, “
Out-of-Plane Vibration Control of a Planar Cable-Driven Parallel Robot
,”
IEEE/ASME Trans. Mechatron.
,
23
(
4
), pp.
1684
1692
. 10.1109/TMECH.2018.2847708
8.
Sellet
,
H.
,
Khayour
,
I.
,
Cuvillon
,
L.
,
Durand
,
S.
, and
Gangloff
,
J.
,
2019
, “
Active Damping of Parallel Robots Driven by Flexible Cables Using Cold-Gas Thrusters
,”
2019 IEEE International Conference on Robotics and Automation
,
Montreal, QC
,
May 20–24
, pp.
530
536
.
9.
Yanai
,
N.
,
Yamamoto
,
M.
, and
Mohri
,
A.
,
2002
, “
Anti-Sway Control for Wire-Suspended Mechanism Based on Dynamics Compensation
,”
Proceedings 2002 IEEE International Conference on Robotics and Automation
, Vol.
4
,
Washington, DC
,
May 11–15
, pp.
4287
4292
.
10.
Caverly
,
R. J.
, and
Forbes
,
J. R.
,
2014
, “
Dynamic Modeling and Noncollocated Control of a Flexible Planar Cable-Driven Manipulator
,”
IEEE Trans. Rob.
,
30
(
6
), pp.
1386
1397
. 10.1109/TRO.2014.2347573
11.
Khosravi
,
M.
, and
Taghirad
,
H.
,
2014
, “
Dynamic Modeling and Control of Parallel Robots With Elastic Cables: Singular Perturbation Approach
,”
IEEE Trans. Rob.
,
30
(
3
), pp.
694
704
. 10.1109/TRO.2014.2298057
12.
Khosravi
,
M. A.
, and
Taghirad
,
H. D.
,
2016
, “
Stability Analysis and Robust Pid Control of Cable-Driven Robots Considering Elasticity in Cables
,”
Amirkabir Int. J. Electrical Electron. Eng.
,
48
(
2
), pp.
113
125
.
13.
Begey
,
J.
,
Cuvillon
,
L.
,
Lesellier
,
M.
,
Gouttefarde
,
M.
, and
Gangloff
,
J.
,
2019
, “
Dynamic Control of Parallel Robots Driven by Flexible Cables and Actuated by Position-Cntrolled Winches
,”
IEEE Trans. Rob.
,
35
(
1
), pp.
286
293
. 10.1109/TRO.2018.2875415
14.
Meunier
,
G.
,
Boulet
,
B.
, and
Nahon
,
M.
,
2009
, “
Control of an Overactuated Cable-Driven Parallel Mechanism for a Radio Telescope Application
,”
IEEE Trans. Control Syst. Technol.
,
17
(
5
), pp.
1043
1054
. 10.1109/TCST.2008.2004812
15.
Jamshidifar
,
H.
,
Khosravani
,
S.
,
Fidan
,
B.
, and
Khajepour
,
A.
,
2018
, “
Vibration Decoupled Modeling and Robust Control of Redundant Cable-Driven Parallel Robots
,”
IEEE/ASME Trans. Mechatron.
,
23
(
2
), pp.
690
701
. 10.1109/TMECH.2018.2793578
16.
Baklouti
,
S.
,
Courteille
,
E.
,
Lemoine
,
P.
, and
Caro
,
S.
,
2019
, “
Vibration Reduction of Cable-Driven Parallel Robots Through Elasto-Dnamic Model-Based Control
,”
Mech. Mach. Theory
,
139
, pp.
329
345
. 10.1016/j.mechmachtheory.2019.05.001
17.
Ghorbel
,
F.
,
Hung
,
J. Y.
, and
Spong
,
M. W.
,
1989
, “
Adaptive Control of Flexible-Joint Manipulators
,”
IEEE Control Syst. Mag.
,
9
(
7
), pp.
9
13
. 10.1109/37.41450
18.
Khalil
,
H.
,
2001
,
Nonlinear Systems
, 2nd ed.,
Prentice-Hall
,
Upper Saddle River, NJ
.
19.
Behzadipour
,
S.
, and
Khajepour
,
A.
,
2005
, “
Stiffness of Cable-Based Parallel Manipulators With Application to Stability Analysis
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
303
310
. 10.1115/1.2114890
20.
Diao
,
X.
, and
Ma
,
O.
,
2009
, “
Vibration Analysis of Cable-Driven Parallel Manipulators
,”
Multibody Syst. Dyn.
,
21
(
4
), pp.
347
360
. 10.1007/s11044-008-9144-0
21.
Yuan
,
H.
,
Courteille
,
E.
, and
Deblaise
,
D.
,
2015
, “
Static and Dynamic Stiffness Analyses of Cable-Driven Parallel Robots With Non-Negligible Cable Mass and Elasticity
,”
Mech. Mach. Theory
,
85
, pp.
64
81
. 10.1016/j.mechmachtheory.2014.10.010
22.
Gould
,
L.
, and
Murray-Lasso
,
M.
,
1966
, “
On the Modal Control of Distributed Systems With Distributed Feedback
,”
IEEE Trans. Automat. Control
,
11
(
4
), pp.
729
737
. 10.1109/TAC.1966.1098463
23.
Preumont
,
A.
,
2011
, “Vibration Control of Active Structures,”
Vibration Control of Active Structures
(
Solid Mechanics and Its Applications
),
Gladwell
,
G. M. L.
, ed., Vol.
179
,
Springer
,
Dordrecht, Netherlands
.
24.
Singh
,
S. P.
,
Singh Pruthi
,
H.
, and
Agarwal
,
V. P.
,
2003
, “
Efficient Modal Control Strategies for Active Control of Vibrations
,”
J. Sound. Vib.
,
262
(
3
), pp.
563
575
. 10.1016/S0022-460X(03)00111-1
25.
Wang
,
X.
,
Mills
,
J.
, and
Guo
,
S.
,
2009
, “
Experimental Identification and Active Control of Configuration Dependent Linkage Vibration in a Planar Parallel Robot
,”
IEEE Trans. Control Syst. Technol.
,
17
(
4
), pp.
960
969
. 10.1109/TCST.2009.2014356
26.
Kozak
,
K.
,
Ebert-Uphoff
,
I.
, and
Singhose
,
W.
,
2004
, “
Locally Linearized Dynamic Analysis of Parallel Manipulators and Application of Input Shaping to Reduce Vibrations
,”
ASME J. Mech. Des.
,
126
(
1
), pp.
156
168
. 10.1115/1.1640362
27.
Weber
,
X.
,
Cuvillon
,
L.
, and
Gangloff
,
J.
,
2015
, “
Active Vibration Canceling of a Cable-Driven Parallel Robot in Modal Space
,”
2015 IEEE International Conference on Robotics and Automation
,
Seattle, WA
,
May 26–30
, pp.
1599
1604
.
28.
Riehl
,
N.
,
Gouttefarde
,
M.
,
Baradat
,
C.
, and
Pierrot
,
F.
,
2010
, “
On the Determination of Cable Characteristics for Large Dimension Cable-Driven Parallel Mechanisms
,”
2010 IEEE International Conference on Robotics and Automation
,
Anchorage, AK
,
May 3–7
, pp.
4709
4714
.
29.
Alp
,
A.
, and
Agrawal
,
S.
,
2002
, “
Cable Suspended Robots: Feedback Controllers With Positive Inputs
,”
Proceedings of the 2002 American Control Conference
, Vol.
1
,
Anchorage, AK
,
May 8–10
, pp.
815
820
.
30.
Oh
,
S.-R.
, and
Agrawal
,
S.
,
2005
, “
Cable Suspended Planar Robots With Redundant Cables: Controllers With Positive Tensions
,”
IEEE Trans. Rob.
,
21
(
3
), pp.
457
465
. 10.1109/TRO.2004.838029
31.
Gouttefarde
,
M.
,
Lamaury
,
J.
,
Reichert
,
C.
, and
Bruckmann
,
T.
,
2015
, “
A Versatile Tension Distribution Algorithm for n -dof Parallel Robots Driven by n + 2 Cables
,”
IEEE Trans. Rob.
,
31
(
6
), pp.
1444
1457
. 10.1109/TRO.2015.2495005
32.
Azadi
,
M.
,
Behzadipour
,
S.
, and
Faulkner
,
G.
,
2009
, “
Antagonistic Variable Stiffness Elements
,”
Mech. Mach. Theory.
,
44
(
9
), pp.
1746
1758
. 10.1016/j.mechmachtheory.2009.03.002
33.
Rugh
,
W. J.
, and
Shamma
,
J. S.
,
2000
, “
Research on Gain Scheduling
,”
Automatica
,
36
(
10
), pp.
1401
1425
. 10.1016/S0005-1098(00)00058-3
34.
Lawrence
,
D. A.
, and
Rugh
,
W. J.
,
1990
, “
On a Stability Theorem for Nonlinear Systems With Slowly Varying Inputs
,”
IEEE Trans. Automat. Control
,
35
(
7
), pp.
860
864
. 10.1109/9.57030
You do not currently have access to this content.