Abstract

A novel application of the well-known single degree-of-freedom (DOF) Bricard mechanism is proposed in this paper. By optimizing the links’ shape and installing motors reasonably, we put forward a ground mobile Bricard mechanism that can move in a constant direction and change its moving direction by using its singular position. The types of kowtowing and spinning modes (dual-mode) are carried out, and the gaits are planned. Finally, the motion simulation and prototype experiment testify that the analyses are correct and the idea of the dual-mode ground mobile Bricard mechanism is feasible.

References

1.
Chen
,
Y.
, and
You
,
Z.
,
2012
, “Spatial Overconstrained Linkages—The Lost Jade,”
Explorations in the History of Machines and Mechanisms
,
T.
Koetsier
, and
M.
Ceccarelli
, eds.,
History of Mechanism and Machine Science, Springer International Publishing
,
Dordrecht
, pp.
535
550
.
2.
Chai
,
W. H.
, and
Chen
,
Y.
,
2010
, “
The Line-Symmetric Octahedral Bricard Linkage and Its Structural Closure
,”
Mech. Mach. Theory
,
45
(
5
), pp.
772
779
. 10.1016/j.mechmachtheory.2009.12.007
3.
Wohlhart
,
K.
,
1993
, “
The Two Types of the Orthogonal Bricard Linkage
,”
Mech. Mach. Theory
,
28
(
6
), pp.
809
817
. 10.1016/0094-114X(93)90023-O
4.
Racila
,
L.
, and
Dahan
,
M.
,
2010
, “
Spatial Properties of Wohlhart Symmetric Mechanism
,”
Meccanica
,
45
(
2
), pp.
153
165
. 10.1007/s11012-009-9232-0
5.
Baker
,
J. E.
,
1995
, “
On Bricard’s Doubly Collapsible Octahedron and Its Planar, Spherical and Skew Counterparts
,”
J. Franklin Inst.
,
332
(
6
), pp.
657
679
. 10.1016/0016-0032(95)00056-9
6.
Feng
,
H.
,
Chen
,
Y.
,
Dai
,
J. S.
, and
Gogu
,
G.
,
2017
, “
Kinematic Study of the General Plane-Symmetric Bricard Linkage and Its Bifurcation Variations
,”
Mech. Mach. Theory
,
116
, pp.
89
104
. 10.1016/j.mechmachtheory.2017.05.019
7.
Baker
,
J. E.
,
1980
, “
An Analysis of the Bricard Linkages
,”
Mech. Mach. Theory
,
15
(
4
), pp.
267
286
. 10.1016/0094-114X(80)90021-X
8.
Baker
,
J. E.
,
1994
, “
On the Single Screw Reciprocal to the General Line-Symmetric Six-Screw Linkage
,”
Mech. Mach. Theory
,
29
(
1
), pp.
169
175
. 10.1016/0094-114X(94)90028-0
9.
Song
,
C. Y.
,
Chen
,
Y.
, and
Chen
,
I.-M.
,
2014
, “
Kinematic Study of the Original and Revised General Line-Symmetric Bricard 6R Linkages
,”
ASME J. Mech. Rob.
,
6
(
3
), pp.
52
68
. 10.1115/1.4026339
10.
Chen
,
Y.
,
You
,
Z.
, and
Tarnai
,
T.
,
2005
, “
Threefold-Symmetric Bricard Linkages for Deployable Structures
,”
Int. J. Solids. Struct.
,
42
(
8
), pp.
2287
2301
. 10.1016/j.ijsolstr.2004.09.014
11.
Chen
,
Y.
, and
Chai
,
W. H.
,
2011
, “
Bifurcation of a Special Line and Plane Symmetric Bricard Linkage
,”
Mech. Mach. Theory
,
46
(
4
), pp.
515
533
. 10.1016/j.mechmachtheory.2010.11.015
12.
López-Custodio
,
P. C.
,
Dai
,
J. S.
, and
Rico
,
J. M.
,
2018
, “
Branch Reconfiguration of Bricard Linkages Based on Toroids Intersections: Plane-Symmetric Case
,”
ASME J. Mech. Rob.
,
10
(
3
), p.
031002
. 10.1115/1.4039002
13.
Qi
,
X.
,
Huang
,
H.
,
Miao
,
Z.
,
Li
,
B.
, and
Deng
,
Z.
,
2016
, “
Design and Mobility Analysis of Large Deployable Mechanisms Based on Plane-Symmetric Bricard Linkage
,”
ASME J. Mech. Rob.
,
139
(
2
), p.
022302
. 10.1115/1.4035003
14.
You
,
Z.
,
2003
,
Design of Structural Mechanisms. Design of Structural Mechanisms
,
LAP LAMBERT Academic Publishing
,
Oxford
.
15.
Luo
,
Y.
,
Yu
,
Y.
, and
Liu
,
J.
,
2008
, “
A Retractable Structure Based on Bricard Linkages and Rotating Rings of Tetrahedra
,”
Int. J. Solids. Struct.
,
45
(
2
), pp.
620
630
. 10.1016/j.ijsolstr.2007.08.018
16.
Lu
,
S.
,
Zlatanov
,
D.
,
Ding
,
X.
,
Zoppi
,
M.
, and
Guest
,
S. D.
,
2016
, “Reconfigurable Chains of Bifurcating Type III Bricard Linkages,”
Advances in Reconfigurable Mechanisms and Robots II
, Vol.
36
,
X.
Ding
,
X.
Kong
, and
J. S.
Dai
, eds.,
Mechanisms and Machine Science, Springer International Publishing
,
Cham, Switzerland
, pp.
3
14
.
17.
Nelson
,
G. D.
,
2010
, “
Extending Bricard Octahedra
.” http://arxiv.org/ftp/arxiv/papers/1011/1011.5193
18.
Husty
,
M.L.
,
Zsombor-Murray
,
P.
,
1994
, “A Special Type of Singular Stewart–Gough Platform,”
Advances in Robot Kinematics and Computational Geometry
,
J.
Lenarčič
, and
B.
Ravani
, eds.,
Springer
,
Dordrecht
.
19.
Nawratil
,
G.
,
2010
, “
Flexible Octahedra in the Projective Extension of the Euclidean 3-Space
,”
J. Geom. Graphics
,
14
(
2
), pp.
147
169
.
20.
Shang
,
H.
,
Wei
,
D.
,
Kang
,
R.
and
Chen
,
Y.
,
2017
, “A Deployable Robot Based on the Bricard Linkage,”
Mechanism and Machine Science
, Vol.
408
,
X.
Zhang
,
N.
Wang
, and
Y.
Huang
, eds.,
ASIAN MMS 2016, CCMMS 2016. Lecture Notes in Electrical Engineering Springer
,
Singapore
.
21.
Shang
,
H.
,
Wei
,
D.
,
Kang
,
R.
, and
Chen
,
Y.
,
2018
, “
Gait Analysis and Control of a Deployable Robot
,”
Mech and Mach Theory
,
120
, pp.
107
119
. 10.1016/j.mechmachtheory.2017.09.020
22.
Liu
,
C.
,
Wang
,
H.
,
Zhai
,
M. L.
, and
Yao
,
Y. A.
,
2013
, “A Rolling Sarrus Mechanism,”
International Conference on Intelligent Robotics and Applications
,
8103
,
J.
Lee
,
M. C.
Lee
,
H.
Liu
, and
J. H.
Ryu
, eds.,
Springer
,
Berlin
, pp.
33
40
.
23.
Liu
,
C.
,
Yao
,
S.
,
Wang
,
H.
, and
Yao
,
Y. A.
,
2015
, “
Ground Mobile Schatz Mechanism
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
015002
. 10.1115/1.4030503
24.
Kong
,
X.
,
2016
, “
Geometric Construction and Kinematic Analysis of a 6R Single-Loop Overconstrained Spatial Mechanism That Has Three Pairs of Revolute Joints With Intersecting Joint Axes
,”
Mech. Mach. Theory
,
102
, pp.
196
202
. 10.1016/j.mechmachtheory.2016.04.002
25.
Gan
,
W. W.
, and
Pellegrino
,
S.
,
2006
, “
Numerical Approach to the Kinematic Analysis of Deployable Structures Forming a Closed Loop
,”
Proceedings Inst. Mech. Eng.—Part C
,
220
(
7
), pp.
1045
1056
. 10.1243/09544062jmes245
26.
Pellegrino
,
S.
,
1993
, “
Structural Computations With the Singular Value Decomposition of the Equilibrium Matrix
,”
Int. J. Solids. Struct.
,
30
(
21
), pp.
3025
3035
. 10.1016/0020-7683(93)90210-X
27.
Vukobratovic
,
M.
,
Frank
,
A. A.
, and
Juricic
,
D.
,
1970
, “
On the Stability of Biped Locomotion
,”
IEEE Trans. Biomed. Eng.
,
17
(
1
), pp.
25
36
. 10.1109/TBME.1970.4502681
You do not currently have access to this content.