Abstract

This paper presents the design, dynamic modeling, and integration of a single degree of freedom (DOF) robotic leg mechanism intended for tailed quadruped locomotion. The design employs a lightweight six-bar linkage that couples the hip and knee flexion/extension joints mechanically, requiring only a single degree of actuation. By utilizing a parametric optimization, a unique topological arrangement is achieved that results in a foot trajectory that is well suited for dynamic gaits including trot-running, bounding, and galloping. Furthermore, a singular perturbation is introduced to the hybrid dynamic framework to address the lack of robust methods that provide a solution for the differential algebraic equations (DAEs) that characterize closed kinematic chain (CKC) structures as well as the hybrid nature of legged locomotion. By approximating the system dynamics as ordinary differential equations (ODEs) and asymptotically driving the constraint error to zero, CKCs can adopt existing real-time model-based/model-predictive/hybrid-control frameworks. The dynamic model is verified through simulations and the foot trajectory was experimentally validated. Preliminary open-loop planar running demonstrated speeds up to 3.2 m/s. These advantages, accompanied by low-integration costs, warrant this leg as a robust, effective platform for future tailed quadruped research.

References

1.
Ananthanarayanan
,
A.
,
Azadi
,
M.
, and
Kim
,
S.
,
2012
, “
Towards a Bio-Inspired Leg Design for High-Speed Running
,”
Bioinspir. Biomim.
,
7
(
4
), p.
046005
. 10.1088/1748-3182/7/4/046005
2.
Hutter
,
M.
,
Gehring
,
C.
,
Jud
,
D.
,
Lauber
,
A.
,
Bellicoso
,
C. D.
,
Tsounis
,
V.
,
Hwangbo
,
J.
,
Bodie
,
K.
,
Fankhauser
,
P.
,
Bloesch
,
M.
, and
Diethelm
,
R.
,
2016
, “
Anymal—A Highly Mobile and Dynamic Quadrupedal Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Daejeon, South Korea
,
Oct. 9–14
, pp.
38
44
.
3.
Semini
,
C.
,
Tsagarakis
,
N. G.
,
Guglielmino
,
E.
,
Focchi
,
M.
,
Cannella
,
F.
, and
Caldwell
,
D. G.
,
2011
, “
Design of HyQ—A Hydraulically and Electrically Actuated Quadruped Robot
,”
Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng.
,
225
(
6
), pp.
831
849
. 10.1177/0959651811402275
4.
Seok
,
S.
,
Wang
,
A.
,
Chuah
,
M. Y.
,
Otten
,
D.
,
Lang
,
J.
, and
Kim
,
S.
,
2013
, “
Design Principles for Highly Efficient Quadrupeds and Implementation on the MIT Cheetah Robot
,”
IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, pp.
3307
3312
.
5.
Todd
,
D. J.
,
2013
,
Walking Machines: An Introduction to Legged Robots
,
Springer
,
Berlin
.
6.
Alamdari
,
A.
, and
Krovi
,
V. N.
,
2016
, “
Design of Articulated Leg–Wheel Subsystem by Kinetostatic Optimization
,”
Mech. Mach. Theory
,
100
, pp.
222
234
. 10.1016/j.mechmachtheory.2016.02.010
7.
Alamdari
,
A.
, and
Krovi
,
V.
,
2016
, “
Design and Analysis of a Cable-Driven Articulated Rehabilitation System for Gait Training
,”
ASME J. Mech. Robot.
,
8
(
5
), p.
051018
. 10.1115/1.4032274
8.
Alamdari
,
A.
, and
Krovi
,
V. N.
,
2016
, “
Static Balancing of Highly Reconfigurable Articulated Wheeled Vehicles for Power Consumption Reduction of Actuators
,”
Int. J. Mech. Rob. Syst.
,
3
(
1
), pp.
15
31
. 10.1504/IJMRS.2016.077035
9.
Alamdari
,
A.
,
Haghighi
,
R.
, and
Krovi
,
V.
,
2018
, “
Stiffness Modulation in an Elastic Articulated-Cable Leg-Orthosis Emulator: Theory and Experiment
,”
IEEE Trans. Robot.
,
34
(
5
), pp.
1266
1279
. 10.1109/TRO.2018.2830356
10.
Alamdari
,
A.
,
Haghighi
,
R.
, and
Krovi
,
V.
,
2019
, “
Gravity-Balancing of Elastic Articulated-Cable Leg-Orthosis Emulator
,”
Mech. Mach. Theory
,
131
, pp.
351
370
. 10.1016/j.mechmachtheory.2018.09.019
11.
Saab
,
W.
,
Rone
,
W. S.
,
Kumar
,
A.
, and
Ben-Tzvi
,
P.
,
2019
, “
Design and Integration of a Novel Spatial Articulated Robotic Tail
,”
IEEE/ASME Trans. Mechatron.
,
24
(
2
), pp.
434
446
. 10.1109/TMECH.2019.2897885
12.
Rone
,
W. S.
,
Saab
,
W.
, and
Ben-Tzvi
,
P.
,
2018
, “
Design, Modeling, and Integration of a Flexible Universal Spatial Robotic Tail
,”
ASME J. Mech. Robot.
,
10
(
4
), p.
041001
. 10.1115/1.4039500
13.
Liu
,
Y.
,
Wang
,
J.
, and
Ben-Tzvi
,
P.
,
2019
, “
A Cable Length Invariant Robotic Tail Using a Circular Shape Universal Joint Mechanism
,”
ASME J. Mech. Robot.
,
11
(
5
), p.
051005
. 10.1115/1.4044067
14.
Rone
,
W. S.
,
Saab
,
W.
,
Kumar
,
A.
, and
Ben-Tzvi
,
P.
,
2019
, “
Controller Design, Analysis, and Experimental Validation of a Robotic Serpentine Tail to Maneuver and Stabilize a Quadrupedal Robot
,”
J. Dyn. Syst. Meas. Control
,
141
(
8
), p.
081002
. 10.1115/1.4042948
15.
Rone
,
W. S.
,
Liu
,
Y.
, and
Ben-Tzvi
,
P.
,
2019
, “
Maneuvering and Stabilization Control of a Bipedal Robot With a Universal-Spatial Robotic Tail
,”
Bioinspir. Biomim.
,
14
(
1
), p.
016014
. 10.1088/1748-3190/aaf188
16.
Patel
,
A.
, and
Boje
,
E.
,
2015
, “
On the Conical Motion of a Two-Degree-of-Freedom Tail Inspired by the Cheetah
,”
IEEE Trans. Robot.
,
31
(
6
), pp.
1555
1560
. 10.1109/TRO.2015.2495004
17.
De
,
A.
, and
Koditschek
,
D. E.
,
2015
, “
Parallel Composition of Templates for Tail-Energized Planar Hopping
,”
IEEE International Conference on Robotics and Automation
,
Seattle, WA
,
May 26–30
, pp.
4562
4569
.
18.
Casarez
,
C. S.
, and
Fearing
,
R. S.
,
2018
, “
Steering of an Underactuated Legged Robot Through Terrain Contact With an Active Tail
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Madrid, Spain
,
Oct. 1–5
, pp.
2739
2746
.
19.
Heim
,
S. W.
,
Ajallooeian
,
M.
,
Eckert
,
P.
,
Vespignani
,
M.
, and
Ijspeert
,
A. J.
,
2016
, “
On Designing an Active Tail for Legged Robots: Simplifying Control via Decoupling of Control Objectives
,”
Ind. Robot
,
43
(
3
), pp.
338
346
. 10.1108/IR-10-2015-0190
20.
Tavolieri
,
C.
,
Ottaviano
,
E.
,
Ceccarelli
,
M.
, and
Rienzo
,
A. D.
,
2006
, “
Analysis and Design of a 1-DOF Leg for Walking Machines
,”
15th International Workshop on Robotics in Alpe-Adria-Danube Region (RAAD)
,
Balatonfured, Hungary
,
June, 2006
, pp.
15
17
.
21.
Ghassaei
,
A.
,
2011
, “
The Design and Optimization of a Crank-Based Leg Mechanism
,”
Ph.D. thesis
,
Pomona College
,
Pomona, CA
.
22.
Park
,
J.
,
Kim
,
K.-S.
, and
Kim
,
S.
,
2014
, “
Design of a Cat-Inspired Robotic Leg for Fast Running
,”
Adv. Robot.
,
28
(
23
), pp.
1587
1598
. 10.1080/01691864.2014.968617
23.
Kamidi
,
V. R.
,
Saab
,
W.
, and
Ben-Tzvi
,
P.
,
2017
, “
Design and Analysis of a Novel Planar Robotic Leg for High-Speed Locomotion
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vancouver, Canada
,
Sept. 24–28
, pp.
6343
6348
.
24.
Seyfarth
,
A.
,
Geyer
,
H.
, and
Herr
,
H.
,
2003
, “
Swing-leg Retraction: a Simple Control Model for Stable Running
,”
J. Exp. Biol.
,
206
(
15
), pp.
2547
2555
. 10.1242/jeb.00463
25.
Poulakakis
,
I.
,
Smith
,
J. A.
, and
Buehler
,
M.
,
2005
, “
Modeling and Experiments of Untethered Quadrupedal Running With a Bounding Gait: The Scout II Robot
,”
Int. J. Robot. Res.
,
24
(
4
), pp.
239
256
. 10.1177/0278364904050917
26.
Brenan
,
K.
,
Campbell
,
S.
, and
Petzold
,
L.
,
1995
,
Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, Society for Industrial and Applied Mathematics
,
Philadelphia
.
27.
Petzold
,
L. R.
,
1992
, “
Numerical Solution of Differential-Algebraic Equations in Mechanical Systems Simulation
,”
Phys. D
,
60
(
1–4
), pp.
269
279
. 10.1016/0167-2789(92)90243-G
28.
Krishnan
,
H.
, and
McClamroch
,
N. H.
,
1994
, “
Tracking in Nonlinear Differential-Algebraic Control Systems With Applications to Constrained Robot Systems
,”
Automatica
,
30
(
12
), pp.
1885
1897
. 10.1016/0005-1098(94)90049-3
29.
Ghorbel
,
F.
,
Chételat
,
O.
, and
Longchamp
,
R.
,
1994
, “
A Reduced Model for Constrained Rigid Bodies With Application to Parallel Robots
,”
IFAC Proc. Vol.
,
27
(
14
), pp.
57
62
. 10.1016/S1474-6670(17)47295-8
30.
Gear
,
C. W.
,
Leimkuhler
,
B.
, and
Gupta
,
G. K.
,
1985
, “
Automatic Integration of Euler-Lagrange Equations With Constraints
,”
J. Comput. Appl. Math.
,
12
, pp.
77
90
. 10.1016/0377-0427(85)90008-1
31.
Baumgarte
,
J.
,
1972
, “
Stabilization of Constraints and Integrals of Motion in Dynamical Systems
,”
Computer Methods Appl. Mech. Eng.
,
1
(
1
), pp.
1
16
. 10.1016/0045-7825(72)90018-7
32.
Ascher
,
U. M.
,
Chin
,
H.
,
Petzold
,
L. R.
, and
Reich
,
S.
,
1995
, “
Stabilization of Constrained Mechanical Systems With DAEs and Invariant Manifolds
,”
J. Struct. Mech.
,
23
(
2
), pp.
135
157
.
33.
Wang
,
Z.
, and
Ghorbel
,
F. H.
,
2006
, “
Control of Closed Kinematic Chains: A Comparative Study
,”
American Control Conference
,
Minneapolis, MN
,
June 14–16
, pp.
2498
2503
.
34.
Yun
,
X.
, and
Sarkar
,
N.
,
1998
, “
Unified Formulation of Robotic Systems With Holonomic and Nonholonomic Constraints
,”
IEEE Trans. Rob. Autom.
,
14
(
4
), pp.
640
650
. 10.1109/70.704238
35.
Ghorbel
,
F. H.
,
Chételat
,
O.
,
Gunawardana
,
R.
, and
Longchamp
,
R.
,
2000
, “
Modeling and Set Point Control of Closed-Chain Mechanisms: Theory and Experiment
,”
IEEE Trans. Control Syst. Technol.
,
8
(
5
), pp.
801
815
. 10.1109/87.865853
36.
Gordon
,
B. W.
, and
Liu
,
S.
,
1998
, “
A Singular Perturbation Approach for Modeling Differential-Algebraic Systems
,”
J. Dyn. Syst. Meas. Control
,
120
(
4
), pp.
541
545
. 10.1115/1.2801500
37.
Dabney
,
J. B.
,
Ghorbel
,
F. H.
, and
Wang
,
Z.
,
2002
, “
Modeling Closed Kinematic Chains via Singular Perturbations
,”
American Control Conference
,
Anchorage, AK
,
May 8–10
, pp.
4104
4110
.
38.
Wang
,
Z.
,
Ghorbel
,
F. H.
, and
Dabney
,
J. B.
,
2004
, “
On the Domain and Error Characterization in the Singular Perturbation Modeling of Closed Kinematic Chains
,”
American Control Conference
,
Boston, MA
,
June 30–July 2
, pp.
493
498
.
39.
Wang
,
Z.
, and
Ghorbel
,
F. H.
,
2006
, “
Control of Closed Kinematic Chains Using a Singularly Perturbed Dynamics Model
,”
J. Dyn. Syst. Meas. Control
,
128
(
1
), pp.
142
151
. 10.1115/1.2171440
40.
Hyun
,
D. J.
,
Lee
,
J.
,
Park
,
S.
, and
Kim
,
S.
,
2016
, “
Implementation of Trot-to-Gallop Transition and Subsequent Gallop on the MIT Cheetah I
,”
Int. J. Robot. Res.
,
35
(
13
), pp.
1627
1650
. 10.1177/0278364916640102
41.
Hutter
,
M.
,
Remy
,
C. D.
,
Höpflinger
,
M. A.
, and
Siegwart
,
R.
,
2010
, “
Slip Running With an Articulated Robotic Leg
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Taipei, Taiwan
,
Oct. 18–22
, pp.
4934
4939
.
42.
Westervelt
,
E. R.
,
Grizzle
,
J. W.
,
Chevallereau
,
C.
,
Choi
,
J. H.
, and
Morris
,
B.
,
2018
,
Feedback Control of Dynamic Bipedal Robot Locomotion
,
CRC Press
,
Boca Raton, FL
.
43.
Grizzle
,
J. W.
,
Chevallereau
,
C.
,
Sinnet
,
R. W.
, and
Ames
,
A. D.
,
2014
, “
Models, Feedback Control, and Open Problems of 3D Bipedal Robotic Walking
,”
Automatica
,
50
(
8
), pp.
1955
1988
. 10.1016/j.automatica.2014.04.021
44.
Wittenburg
,
J.
,
2007
,
Dynamics of Multibody Systems
,
Springer
,
Berlin
.
45.
Hurmuzlu
,
Y.
, and
Marghitu
,
D. B.
,
1994
, “
Rigid Body Collisions of Planar Kinematic Chains With Multiple Contact Points
,”
Int. J. Rob. Res.
,
13
(
1
), pp.
82
92
. 10.1177/027836499401300106
46.
Kumar
,
A.
, and
Ben-Tzvi
,
P.
,
2016
, “
Spatial Object Tracking System Based on Linear Optical Sensor Arrays
,”
IEEE Sens. J.
,
16
(
22
), pp.
7933
7940
. 10.1109/JSEN.2016.2607120
You do not currently have access to this content.