Abstract

Based on observations from nature, tails are believed to help animals achieve highly agile motions. Traditional single-link robotic tails serve as a good simplification for both modeling and implementation purposes. However, this approach cannot explain the complicated tail behaviors exhibited in nature where multi-link structures are more commonly observed. Unlike its single-link counterpart, articulated multi-link tails essentially belong to the serial manipulator family which possesses special motion transmission design challenges. To address this challenge, a cable-driven hyper-redundant design becomes the most used approach. Limited by cable strength and elastic components, this approach suffers from low-frequency response, inadequate generated inertial loading, and fragile hardware, which are all critical drawbacks for robotic tails design. To solve these structure-related shortcomings, a multi-link robotic tail made up of rigid links is proposed in this paper. The new structure takes advantage of the traditional hybrid mechanism architecture, but utilizes rigid mechanisms to couple the motions between the ith link and the (i + 1)th link rather than using cable actuation. By doing so, the overall tail becomes a rigid mechanism that achieves quasi-uniform spatial bending for each segment and allows performing highly dynamic motions. The mechanism and detailed design of this new robotic tail are presented. The kinematic model was developed and an optimization process was conducted to reduce the bending non-uniformity for the rigid tail. Based on this special optimization design, the dynamic model of the new mechanism is significantly simplified. A small-scale three-segment prototype was integrated to verify the proposed mechanism's unique mobility.

References

1.
Hickman
,
G. C.
,
1979
, “
The Mammalian Tail: A Review of Functions
,”
Mammal Rev.
,
9
(
4
), pp.
143
157
. 10.1111/j.1365-2907.1979.tb00252.x
2.
Patel
,
A.
, and
Boje
,
E.
,
2015
, “
On the Conical Motion of a Two-Degree-of-Freedom Tail Inspired by the Cheetah
,”
IEEE Trans. Rob.
,
31
(
6
), pp.
1555
1560
. 10.1109/TRO.2015.2495004
3.
Young
,
J. W.
,
Russo
,
G. A.
,
Fellmann
,
C. D.
,
Thatikunta
,
M. A.
, and
Chadwell
,
B. A.
,
2015
, “
Tail Function During Arboreal Quadrupedalism in Squirrel Monkeys (Saimiri Boliviensis) and Tamarins (Saguinus Oedipus)
,”
J. Exp. Zool. A Ecol. Genet. Physiol.
,
323
(
8
), pp.
556
566
.
4.
O’Connor
,
S. M.
,
Dawson
,
T. J.
,
Kram
,
R.
, and
Donelan
,
J. M.
,
2014
, “
The Kangaroo’s Tail Propels and Powers Pentapedal Locomotion
,”
Biol. Lett.
,
10
(
7
), p.
20140381
. 10.1098/rsbl.2014.0381
5.
Saab
,
W.
,
Rone
,
W. S.
, and
Ben-Tzvi
,
P.
,
2018
, “
Robotic Tails: A State-of-the-Art Review
,”
Robotica
,
36
(
9
), pp.
1263
1277
. 10.1017/S0263574718000425
6.
Liu
,
G. H.
,
Lin
,
H. Y.
,
Lin
,
H. Y.
,
Chen
,
S. T.
, and
Lin
,
P. C.
,
2014
, “
A Bio-Inspired Hopping Kangaroo Robot With an Active Tail
,”
J. Bionic Eng.
,
11
(
4
), pp.
541
555
. 10.1016/S1672-6529(14)60066-4
7.
De
,
A.
, and
Koditschek
,
D. E.
,
2015
, “
Parallel Composition of Templates for Tail-Energized Planar Hopping
,”
IEEE International Conference on Robotics and Automation
,
Seattle
,
May 26–30
, pp.
4562
4569
.
8.
Liu
,
Y.
, and
Ben-Tzvi
,
P.
,
2018
, “
Dynamic Modeling of a Quadruped With a Robotic Tail Using Virtual Work Principle
,”
Proceedings of the IDETC/CIE
,
Quebec City, Canada
,
Aug. 26–29
, p.
V05BT07A021
.
9.
Libby
,
T.
,
Moore
,
T. Y.
,
Chang-Siu
,
E.
,
Li
,
D.
,
Cohen
,
D. J.
,
Jusufi
,
A.
, and
Full
,
R. J.
,
2012
, “
Tail-Assisted Pitch Control in Lizards, Robots and Dinosaurs
,”
Nature
,
481
(
7380
), pp.
181
184
. 10.1038/nature10710
10.
Briggs
,
R.
,
Lee
,
J.
,
Haberland
,
M.
, and
Kim
,
S.
,
2012
, “
Tails in Biomimetic Design: Analysis, Simulation, and Experiment
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vilamoura, Portugal
,
Oct. 7–12
, pp.
1473
1480
.
11.
Zeglin
,
G. J.
,
1991
, “
Uniroo—A One Legged Dynamic Hopping Robot
,”
Bachelor thesis
,
Massachusetts Institute of Technology
,
Boston, MA
.
12.
Jusufi
,
A.
,
Kawano
,
D. T.
,
Libby
,
T.
, and
Full
,
R. J.
,
2010
, “
Righting and Turning in Mid-Air Using Appendage Inertia: Reptile Tails, Analytical Models and Bio-Inspired Robots
,”
Bioinspiration Biomimetics
,
5
(
4
), p.
045001
. 10.1088/1748-3182/5/4/045001
13.
Chang-Siu
,
E.
,
Libby
,
T.
,
Tomizuka
,
M.
, and
Full
,
R. J.
,
2011
, “
A Lizard-Inspired Active Tail Enables Rapid Maneuvers and Dynamic Stabilization in a Terrestrial Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
,
Sept. 25–30
, pp.
1887
1894
.
14.
Chang-Siu
,
E.
,
Libby
,
T.
,
Brown
,
M.
,
Full
,
R. J.
, and
Tomizuka
,
M.
,
2013
, “
A Nonlinear Feedback Controller for Aerial Self-Righting by a Tailed Robot
,”
IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, pp.
32
39
.
15.
Heim
,
S. W.
,
Ajallooeian
,
M.
,
Eckert
,
P.
,
Vespignani
,
M.
, and
Ijspeert
,
A. J.
,
2016
, “
On Designing an Active Tail for Legged Robots: Simplifying Control Via Decoupling of Control Objectives
,”
Ind. Robot.
,
43
(
3
), pp.
338
346
. 10.1108/IR-10-2015-0190
16.
Casarez
,
C. S.
, and
Fearing
,
R. S.
,
2018
, “
Steering of an Underactuated Legged Robot Through Terrain Contact With an Active Tail
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Madrid, Spain
,
Oct. 1–5
, pp.
2739
2746
.
17.
Libby
,
T.
,
Johnson
,
A. M.
,
Chang-Siu
,
E.
,
Full
,
R. J.
, and
Koditschek
,
D. E.
,
2016
, “
Comparative Design, Scaling, and Control of Appendages for Inertial Reorientation
,”
IEEE Trans. Rob.
,
32
(
6
), pp.
1380
1398
. 10.1109/TRO.2016.2597316
18.
Machairas
,
K.
, and
Papadopoulos
,
E.
,
2015
, “
On Quadruped Attitude Dynamics and Control Using Reaction Wheels and Tails
,”
European Control Conference
,
Linz, Austria
,
July 15–17
, pp.
753
758
.
19.
Mallison
,
H.
,
2010
, “
CAD Assessment of the Posture and Range of Motion of Kentrosaurus Aethiopicus HENNIG 1915
,”
Swiss J. Geosci.
,
103
(
2
), pp.
211
233
. 10.1007/s00015-010-0024-2
20.
Rone
,
W.
, and
Ben-Tzvi
,
P.
,
2016
, “
Dynamic Modeling and Simulation of a Yaw-Angle Quadruped Maneuvering With a Planar Robotic Tail
,”
J. Dyn. Syst. Trans. ASME
,
138
(
8
), p.
084502
. 10.1115/1.4033103
21.
Santiago
,
J. L. C.
,
Godage
,
I. S.
,
Gonthina
,
P.
, and
Walker
,
I. D.
,
2016
, “
Soft Robots and Kangaroo Tails: Modulating Compliance in Continuum Structures Through Mechanical Layer Jamming
,”
Soft Rob.
,
3
(
2
), pp.
54
63
. 10.1089/soro.2015.0021
22.
Saab
,
W.
,
Rone
,
W.
, and
Ben-Tzvi
,
P.
,
2018
, “
Discrete Modular Serpentine Robotic Tail: Design, Analysis and Experimentation
,”
Robotica
,
36
(
7
), pp.
994
1018
. 10.1017/S0263574718000176
23.
Simon
,
B.
,
Sato
,
R.
,
Choley
,
J. Y.
, and
Ming
,
A.
,
2018
, “
Development of a Bio-Inspired Flexible Tail Systemxs
,”
12th France-Japan and 10th Europe-Asia Congress on Mechatronics
,
Tsu, Japan
,
Sept. 10–12
, pp.
230
235
.
24.
Rone
,
W. S.
,
Saab
,
W.
, and
Ben-Tzvi
,
P.
,
2018
, “
Design, Modeling, and Integration of a Flexible Universal Spatial Robotic Tail
,”
ASME J. Mech. Rob.
,
10
(
4
), p.
041001
. 10.1115/1.4039500
25.
Saab
,
W.
,
Rone
,
W. S.
,
Kumar
,
A.
, and
Ben-Tzvi
,
P.
,
2019
, “
Design and Integration of a Novel Spatial Articulated Robotic Tail
,”
IEEE/ASME Trans. Mechatron.
,
24
(
2
), pp.
434
446
. 10.1109/TMECH.2019.2897885
26.
Liu
,
Y.
,
Wang
,
J.
, and
Ben-Tzvi
,
P.
,
2019
, “
A Cable Length Invariant Robotic Tail Using a Circular Shape Universal Joint Mechanism
,”
ASME J. Mech. Rob.
,
11
(
5
), p.
051005
. 10.1115/1.4044067
27.
Rone
,
W. S.
,
Liu
,
Y.
, and
Ben-Tzvi
,
P.
,
2019
, “
Maneuvering and Stabilization Control of a Bipedal Robot With a Universal-Spatial Robotic Tail
,”
Bioinspiration Biomimetics
,
14
(
1
), p.
016014
. 10.1088/1748-3190/aaf188
28.
Saab
,
W.
,
Yang
,
J.
, and
Ben-Tzvi
,
P.
,
2018
, “
Modeling and Control of an Articulated Tail for Maneuvering a Reduced Degree of Freedom Legged Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Madrid, Spain
,
Oct. 1–5
, pp.
2695
2700
.
29.
Trivedi
,
D.
,
Rahn
,
C. D.
,
Kier
,
W. M.
, and
Walker
,
I. D.
,
2008
, “
Soft Robotics: Biological Inspiration, State of the Art, and Future Research
,”
Appl. Bionics Biomech.
,
5
(
3
), pp.
99
117
. 10.1155/2008/520417
30.
Tanev
,
T. K.
,
2000
, “
Kinematics of a Hybrid (Parallel–Serial) Robot Manipulator
,”
Mech. Mach. Theory
,
35
(
9
), pp.
1183
1196
. 10.1016/S0094-114X(99)00073-7
31.
Merlet
,
J. P.
,
2006
,
Parallel Robots
,
Springer
,
Berlin
.
32.
Fan
,
C.
,
Liu
,
H.
, and
Zhang
,
Y.
,
2013
, “
Type Synthesis of 2T2R, 1T2R and 2R Parallel Mechanisms
,”
Mech. Mach. Theory
,
61
, pp.
184
190
. 10.1016/j.mechmachtheory.2012.10.006
33.
Hess-Coelho
,
T. A.
,
2006
, “
Topological Synthesis of a Parallel Wrist Mechanism
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
230
235
. 10.1115/1.2121742
34.
Gosselin
,
C. M.
, and
Caron
,
F.
,
1999
, “
Two Degree-of-Freedom Spherical Orienting Device
,” U.S. Patent 5,966,991.
35.
Zeng
,
D.
, and
Huang
,
Z.
,
2011
, “
Type Synthesis of the Rotational Decoupled Parallel Mechanism Based on Screw Theory
,”
Sci. China Technol. Sci.
,
54
(
4
), pp.
998
1004
. 10.1007/s11431-010-4239-2
36.
Kong
,
X
.,
2010
, “
Forward Displacement Analysis of a 2-DOF RR-RRR-RRR Spherical Parallel Manipulator
,”
IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications
,
Qingdao, China
,
July 15–17
, pp.
446
451
.
37.
Cammarata
,
A.
,
2015
, “
Optimized Design of a Large-Workspace 2-DOF Parallel Robot for Solar Tracking Systems
,”
Mech. Mach. Theory
,
83
, pp.
175
186
. 10.1016/j.mechmachtheory.2014.09.012
38.
Gao
,
F.
,
Li
,
W.
,
Zhao
,
X.
,
Jin
,
Z.
, and
Zhao
,
H.
,
2002
, “
New Kinematic Structures for 2-, 3-, 4-, and 5-DOF Parallel Manipulator Designs
,”
Mech. Mach. Theory
,
37
(
11
), pp.
1395
1411
. 10.1016/S0094-114X(02)00044-7
39.
Kuo
,
C. H.
, and
Dai
,
J. S.
,
2013
, “
Task-oriented Structure Synthesis of a Class of Parallel Manipulators Using Motion Constraint Generator
,”
Mech. Mach. Theory
,
70
, pp.
394
406
. 10.1016/j.mechmachtheory.2013.08.010
40.
Carricato
,
M.
, and
Parenti-Castelli
,
V.
,
2004
, “
A Novel Fully Decoupled Two-Degrees-of-Freedom Parallel Wrist
,”
Int. J. Rob. Res.
,
23
(
6
), pp.
661
667
. 10.1177/0278364904044077
41.
Heo
,
P.
,
Gu
,
G. M.
,
Lee
,
S. J.
,
Rhee
,
K.
, and
Kim
,
J.
,
2012
, “
Current Hand Exoskeleton Technologies for Rehabilitation and Assistive Engineering
,”
Int. J. Precis. Eng. Manuf.
,
13
(
5
), pp.
807
824
. 10.1007/s12541-012-0107-2
42.
Gogu
,
G.
,
2005
, “
Mobility of Mechanisms: a Critical Review
,”
Mech. Mach. Theory
,
40
(
9
), pp.
1068
1097
. 10.1016/j.mechmachtheory.2004.12.014
43.
Featherstone
,
R.
,
2014
,
Rigid Body Dynamics Algorithms
,
Springer
,
Berlin
.
You do not currently have access to this content.